已知圓M:x2+(y-4)2=1,直線l:2x-y=0,點P在直線l上,過點P作圓M的切線PA、PB,切點為A、B.
(Ⅰ)若∠APB=60°,求P點坐標;
(Ⅱ)若點P的坐標為(1,2),過P作直線與圓M交于C、D兩點,當|CD|=
2
時,求直線CD的方程;
(Ⅲ)求證:經(jīng)過A、P、M三點的圓與圓M的公共弦必過定點,并求出定點的坐標.
分析:(I)由條件可知|PM|=2,建立方程,可求P點坐標;
(Ⅱ)由條件可知圓心到直線CD的距離d=
2
2
,設直線CD的方程,可得結論;
(Ⅲ)經(jīng)過A、P、M三點的圓與圓M相減,可得公共弦,即可求出結論.
解答:解:(Ⅰ)由條件可知|PM|=2,設P(a,2a),則|PM|=
a2+(2a-4)2
=2
解得a=2或a=1.2,所以P(2,4)或P(1.2,2.4)…(4分)
(Ⅱ)由條件可知圓心到直線CD的距離d=
2
2
,設直線CD的方程為y-2=k(x-1),
|k+2|
k2+1
=
2
2
,解得k=-7或k=-1;
所以直線CD的方程為x+y-3=0或7x+y-9=0…(8分)
(III)設P(a,2a),過A,P,M三點的圓即以PM為直徑的圓,其方程為x(x-a)+(y-4)(y-2a)=0
與x2+(y-4)2=1相減可得(4-2a)y-ax+8a-15=0
即(-x-2y+8)a+4y-15=0
4y-15=0
-x-2y+8=0
,可得
x=
1
2
y=
15
4

∴經(jīng)過A、P、M三點的圓與圓M的公共弦必過定點(
1
2
15
4
).
點評:本題考查直線與圓的位置關系,考查兩圓的公共弦,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓M:x2+(y-2)2=1,定點A(4,2)在直線x-2y=0上,點P在線段OA上,過P點作圓M的切線PT,切點為T.
(1)若MP=
5
,求直線PT的方程;
(2)經(jīng)過P,M,T三點的圓的圓心是D,求線段DO長的最小值L.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知中心在坐標原點O的橢圓C經(jīng)過點A(3
2
,4)
,點B(
10
,2
5
)

(1)求橢圓C的方程;
(2)已知圓M:x2+(y-5)2=9,雙曲線G與橢圓C有相同的焦點,它的兩條漸近線恰好與圓M相切,求雙曲線G的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓M:x2+(y-2)2=1,Q是x軸上的動點,QA、QB分別切圓M于A,B兩點.
(1)若點Q的坐標為(1,0),求切線QA、QB的方程;
(2)求四邊形QAMB的面積的最小值;
(3)若|AB|=
4
2
3
,求直線MQ的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓M:x2+(y-4)2=4,直線l的方程為x-2y=0,點P是直線l上一動點,過點P作圓的切線PA、PB,切點為A、B.
(Ⅰ)當P的橫坐標為
165
時,求∠APB的大。
(Ⅱ)求證:經(jīng)過A、P、M三點的圓N必過定點,并求出所以定點的坐標.
(Ⅲ)求線段AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓M:x2+(y-2)2=1,設點B,C是直線l:x-2y=0上的兩點,它們的橫坐標分別是t,t+4(t∈R),P點的縱坐標為a且點P在線段BC上,過P點作圓M的切線PA,切點為A
(1)若t=0,MP=
5
,求直線PA的方程;
(2)經(jīng)過A,P,M三點的圓的圓心是D,
①將DO2表示成a的函數(shù)f(a),并寫出定義域.
②求線段DO長的最小值.

查看答案和解析>>

同步練習冊答案