已知向量,動(dòng)點(diǎn)M到定直線y=1的距離等于d,并且滿(mǎn)足,其中O是坐標(biāo)原點(diǎn),k是參數(shù).
(1)求動(dòng)點(diǎn)M的軌跡方程,并判斷曲線類(lèi)型;
(2)當(dāng)時(shí),求的最大值和最小值;
(3)如果動(dòng)點(diǎn)M的軌跡是圓錐曲線,其離心率e滿(mǎn)足,求實(shí)數(shù)k的取值范圍.
【答案】分析:(1)先設(shè)出M的坐標(biāo)并求出A(2,0),B(2,1),C(0,1),把各點(diǎn)的坐標(biāo)以及動(dòng)點(diǎn)M到定直線y=1的距離等于d代入,整理即可求出動(dòng)點(diǎn)M的軌跡方程為(1-k)(x2-2x)+y2=0,再分情況得出曲線類(lèi)型;
(2)先利用(1)的結(jié)論得出:0≤x≤2,y2=,再把整理為,利用二次函數(shù)在閉區(qū)間上的最值求即可求出的最大值和最小值;
(3)先由離心率e滿(mǎn)足,得圓錐曲線是橢圓,且方程可化為.再利用離心率e和系數(shù)的關(guān)系分情況分別求出對(duì)應(yīng)的實(shí)數(shù)k的取值范圍即可.
解答:解:(1)設(shè)M(x,y),由題設(shè)可得A(2,0),B(2,1),C(0,1)
,,

∴(x,y)•(x-2,y)=
k[(x,y-1)•(x-2,y-1)-|y-1|2]
即(1-k)(x2-2x)+y2=0為所求軌跡方程.
當(dāng)k=1時(shí),y=0,動(dòng)點(diǎn)M的軌跡是一條直線;
當(dāng)k=0時(shí),x2-2x+y2=0,動(dòng)點(diǎn)M的軌跡是圓;
當(dāng)k≠1時(shí),方程可化為,當(dāng)k>1時(shí),動(dòng)點(diǎn)M的軌跡是雙曲線;
當(dāng)0<k<1或k<0時(shí),動(dòng)點(diǎn)M的軌跡是橢圓.
(2)當(dāng)時(shí),M的軌跡方程為,.得:0≤x≤2,y2=

=
=
∴當(dāng)時(shí),取最小值
當(dāng)x=0時(shí),取最大值16.
因此,的最小值是,最大值是4.
(3)由于,即e<1,此時(shí)圓錐曲線是橢圓,其方程可化為,
①當(dāng)0<k<1時(shí),a2=1,b2=1-k,c2=1-(1-k)=k,,∵,∴;
②當(dāng)k<0時(shí),a2=1-k,b2=1,c2=(1-k)-1=-k,,∵,∴,而k<0得,
綜上,k的取值范圍是
點(diǎn)評(píng):本題綜合考查了軌跡方程的求法以及向量與圓錐曲線的綜合問(wèn)題和分類(lèi)討論思想的應(yīng)用,是對(duì)知識(shí)的綜合考查,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:湖南省炎德英才大聯(lián)考2009屆高三第八次月考數(shù)學(xué)試題(理) 題型:044

已知向量,動(dòng)點(diǎn)M到定直線y=1的距離等于d,并且滿(mǎn)足,其中O是坐標(biāo)原點(diǎn),k是參數(shù).

(1)求動(dòng)點(diǎn)M的軌跡方程;

(2)當(dāng)時(shí),若直線AC與動(dòng)點(diǎn)M的軌跡相交于A、D兩點(diǎn),線段AD的垂直平分線交x軸E,求的取值范圍;

(3)如果動(dòng)點(diǎn)M的軌跡是一條圓錐曲線,其離心率e滿(mǎn)足,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量數(shù)學(xué)公式,動(dòng)點(diǎn)M到定直線y=1的距離等于d,并且滿(mǎn)足數(shù)學(xué)公式,其中O是坐標(biāo)原點(diǎn),k是參數(shù).
(1)求動(dòng)點(diǎn)M的軌跡方程,并判斷曲線類(lèi)型;
(2)當(dāng)數(shù)學(xué)公式時(shí),求數(shù)學(xué)公式的最大值和最小值;
(3)如果動(dòng)點(diǎn)M的軌跡是圓錐曲線,其離心率e滿(mǎn)足數(shù)學(xué)公式,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年陜西省西安市西工大附中高考數(shù)學(xué)七模試卷(解析版) 題型:解答題

已知向量,動(dòng)點(diǎn)M到定直線y=1的距離等于d,并且滿(mǎn)足,其中O是坐標(biāo)原點(diǎn),k是參數(shù).
(1)求動(dòng)點(diǎn)M的軌跡方程,并判斷曲線類(lèi)型;
(2)當(dāng)時(shí),求的最大值和最小值;
(3)如果動(dòng)點(diǎn)M的軌跡是圓錐曲線,其離心率e滿(mǎn)足,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:遼寧省大連二十四中2009屆高三第五次模擬考試(理) 題型:解答題

 

已知向量,動(dòng)點(diǎn)M到定直線的距離等于,并且滿(mǎn)足,其中為坐標(biāo)原點(diǎn),為非負(fù)實(shí)數(shù).

(I)求動(dòng)點(diǎn)M的軌跡方程;   

(II)若將曲線向左平移一個(gè)單位,得曲線,試判斷曲線為何種類(lèi)型;

(III)若(II)中曲線為圓錐曲線,其離心率滿(mǎn)足,當(dāng)是曲線的兩個(gè)焦點(diǎn)時(shí),則曲線上恒存在點(diǎn)P,使得成立,求實(shí)數(shù)的取值范圍.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案