(1)解:求導(dǎo)函數(shù),f′(x)=(1-x)e
-x,令f′(x)=0,解得x=1
由f′(x)>0,可得x<1;由f′(x)<0,可得x>1
∴函數(shù)在(-∞,1)上是增函數(shù),在(1,+∞)上是減函數(shù)
∴函數(shù)在x=1時(shí)取得極大值f(1)=
;
(2)證明:由題意,g(x)=f(2-x)=(2-x)e
x-2,
令F(x)=f(x)-g(x),即F(x)=xe
-x-(2-x)e
x-2,
∴F′(x)=(x-1)(e
2x-2-1)e
-x,
當(dāng)x>1時(shí),2x-2>0,∴e
2x-2-1>0,∵e
-x,>0,∴F′(x)>0,
∴函數(shù)F(x)在[1,+∞)上是增函數(shù)
∵F(1)=0,∴x>1時(shí),F(xiàn)(x)>F(1)=0
∴當(dāng)x>1時(shí),f(x)>g(x).
分析:(1)求導(dǎo)函數(shù),由導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)區(qū)間,從而可求函數(shù)的極值;
(2)構(gòu)造函數(shù)F(x)=f(x)-g(x),證明函數(shù)F(x)在[1,+∞)上是增函數(shù),即可證得結(jié)論.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性與極值,考查不等式的證明,構(gòu)造函數(shù),確定函數(shù)的單調(diào)性是關(guān)鍵.