(05年湖南卷文)(14分)

已知橢圓C:=1(a>b>0)的左.右焦點(diǎn)為F1、F2,離心率為e. 直線

l:y=ex+a與x軸.y軸分別交于點(diǎn)A、B,M是直線l與橢圓C的一個(gè)公共點(diǎn),P是點(diǎn)F1關(guān)于直線l的對(duì)稱(chēng)點(diǎn),設(shè)=λ.

   (Ⅰ)證明:λ=1-e2;

   (Ⅱ)若,△PF1F2的周長(zhǎng)為6;寫(xiě)出橢圓C的方程;

   (Ⅲ)確定λ的值,使得△PF1F2是等腰三角形.

解析:(Ⅰ)證法一:因?yàn)锳、B分別是直線l:與x軸、y軸的交點(diǎn),所以A、B的坐標(biāo)分別是.

    所以點(diǎn)M的坐標(biāo)是().    由

    證法二:因?yàn)锳、B分別是直線l:與x軸、y軸的交點(diǎn),所以A、B的坐標(biāo)分別是設(shè)M的坐標(biāo)是

所以      因?yàn)辄c(diǎn)M在橢圓上,所以 

   解得

   (Ⅱ)當(dāng)時(shí),,所以   由△MF1F­2­­的周長(zhǎng)為6,得

         所以  橢圓方程為

   (Ⅲ)解法一:因?yàn)镻F1⊥l,所以∠PF1F2=90°+∠BAF1為鈍角,要使△PF1F2為等腰三角形,必有|PF1|=|F1F2|,即

    設(shè)點(diǎn)F1到l的距離為d,由

    得   所以

    即當(dāng)△PF1F­2­­為等腰三角形.

解法二:因?yàn)镻F1⊥l,所以∠PF1F2=90°+∠BAF1為鈍角,要使△PF1F2為等腰三角形,必有|PF1|=|F1F2|,

設(shè)點(diǎn)P的坐標(biāo)是,

由|PF1|=|F1F2|得

兩邊同時(shí)除以4a2,化簡(jiǎn)得  從而

于是.    即當(dāng)時(shí),△PF1F2為等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(05年湖南卷文)已知平面和直線,給出條件:①;②;③;④;⑤.

   (i)當(dāng)滿(mǎn)足條件           時(shí),有;(ii)當(dāng)滿(mǎn)足條件           時(shí),有.

       (填所選條件的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案