已知函數(shù)f(x)=ln(x+1)-x2x.
(1)若關(guān)于x的方程f(x)=-xb在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(2)證明:對(duì)任意的正整數(shù)n,不等式2++…+ >ln(n+1)都成立.

(1) ln 3-1≤b<ln 2+. (2)見解析

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).對(duì)于任意實(shí)數(shù)x恒有
(1)求實(shí)數(shù)的最大值;
(2)當(dāng)最大時(shí),函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù);
(1)若>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為,求的值;
(3)若f(x)<x2在(1,上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),圖象與軸異于原點(diǎn)的交點(diǎn)M處的切線為,軸的交點(diǎn)N處的切線為, 并且平行.
(1)求的值;
(2)已知實(shí)數(shù)t∈R,求的取值范圍及函數(shù)的最小值;
(3)令,給定,對(duì)于兩個(gè)大于1的正數(shù),存在實(shí)數(shù)滿足:,,并且使得不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=.
(1)確定yf(x)在(0,+∞)上的單調(diào)性;
(2)若a>0,函數(shù)h(x)=xf(x)-xax2在(0,2)上有極值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=ex-ln(xm).
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x3x2axa,x∈R,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量y(單位:千克)與銷售價(jià)格x(單位:元/千克)滿足關(guān)系式y+10(x-6)2,其中3<x<6,a為常數(shù).已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷售價(jià)格x的值,使商場(chǎng)每日銷售該商品所獲得的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)直線是曲線的一條切線,.
(1)求切點(diǎn)坐標(biāo)及的值;
(2)當(dāng)時(shí),存在,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案