如圖,△PAB是正三角形,四邊形ABCD是正方形,|
AB
|=4
,O是AB中點(diǎn),面PAB⊥面ABCD,以直線AB為x軸、以過(guò)點(diǎn)O平行于AD的直線為y軸、以直線OP為z軸建立如圖所示的空間直角坐標(biāo)系O-xyz,E為線段PD中點(diǎn),則點(diǎn)E的坐標(biāo)是(  )
A.(-2,2,
3
)
B.(-1,2,
3
)
C.(-1,1,
3
)
D.(-1,2,2)

如圖所示,△PAB是正三角形,P點(diǎn)的坐標(biāo)為(0,0,2
3
),
因?yàn)樗倪呅蜛BCD是正方形,|
AB
|=4
,得D(-2,4,0),
又P(0,0,2
3
),E為PD的中點(diǎn),
由中點(diǎn)坐標(biāo)公式可得E(-1,2,
3
).
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

底面是平行四邊形的四棱錐P-ABCD,E、F、G分別為AB、PC、DC的中點(diǎn),
(1)求證:EF面PAD;
(2)若PA⊥平面ABCD,求證:面EFG⊥面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正方形ABCD的邊長(zhǎng)為1,分別取BC、CD的中點(diǎn)E、F,連接AE、EF、AF,以AE、EF、FA為折痕,折疊這個(gè)正方形,使B、C、D重合為一點(diǎn)P,得到一個(gè)四面體P-AEF,
(1)求證:AP⊥EF;
(2)求證:平面APE⊥平面APF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)B與點(diǎn)A(1,2,3)關(guān)于M(0,-1,2)對(duì)稱,則點(diǎn)B的坐標(biāo)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

空間中點(diǎn)A(1,-2,3)在坐標(biāo)平面yoz上的投影的坐標(biāo)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

,則的最小值為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

[2013·四川高考]拋物線y2=8x的焦點(diǎn)到直線x-y=0的距離是(  )
A.2B.2C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

點(diǎn)A(1,1)到直線xcosθ+ysinθ-2=0的距離的最大值是(  )
A.2B.2-
C.2+D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如右圖.M是棱長(zhǎng)為2cm的正方體ABCD-A1B1C1D1的棱CC1的中點(diǎn),沿正方體表面從點(diǎn)A到點(diǎn)M的最短路程是         cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案