【題目】如圖,在四棱錐中,, 是等邊三角形,E是PA的中點(diǎn),.

(1)求證:;

(2)求三棱錐的體積.

【答案】(1)證明見(jiàn)解析;(2)3.

【解析】

1)取AD中點(diǎn)F,連接BF,EF,結(jié)合已知證得ADEF,又△ABC是正三角形,得ADBF,由線(xiàn)面垂直的判定可得AD⊥平面BEF,進(jìn)一步得到ADBE;

2)由ADBC,∠BCD90°,得ADCD,再由ADPD,得AD⊥平面PCD,可得平面ABCD⊥平面PCD,過(guò)點(diǎn)PPHCD,交CD的延長(zhǎng)線(xiàn)于點(diǎn)H,則PH⊥平面ABCD,求解直角三角形PDHPH,再由棱錐體積公式求三棱錐PABD的體積.

1)證明:取的中點(diǎn),連接,,

,分別是,的中點(diǎn),

.

是正三角形,

.

,平面

平面

平面

2,,

.

,,平面

平面.

平面,

平面平面.

過(guò)點(diǎn),交延長(zhǎng)線(xiàn)于點(diǎn),則平面.

在直角三角形中,,,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)處取得極大值,則實(shí)數(shù)的取值范圍為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】基于移動(dòng)網(wǎng)絡(luò)技術(shù)的共享單車(chē)被稱(chēng)為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國(guó),給人們帶來(lái)新的出行體驗(yàn),某共享單車(chē)運(yùn)營(yíng)公司的市場(chǎng)研究人員為了了解公司的經(jīng)營(yíng)狀況,對(duì)公司最近6個(gè)月的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代碼

1

2

3

4

5

6

11

13

16

15

20

21

(1)請(qǐng)用相關(guān)系數(shù)說(shuō)明能否用線(xiàn)性回歸模型擬合與月份代碼之間的關(guān)系.如果能,請(qǐng)計(jì)算出關(guān)于的線(xiàn)性回歸方程,如果不能,請(qǐng)說(shuō)明理由;

(2)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購(gòu)一批單車(chē)擴(kuò)大市場(chǎng),從成本1000元/輛的型車(chē)和800元/輛的型車(chē)中選購(gòu)一種,兩款單車(chē)使用壽命頻數(shù)如下表:

車(chē)型 報(bào)廢年限

1年

2年

3年

4年

總計(jì)

10

30

40

20

100

15

40

35

10

100

經(jīng)測(cè)算,平均每輛單車(chē)每年能為公司帶來(lái)500元的收入,不考慮除采購(gòu)成本以外的其它成本,假設(shè)每輛單車(chē)的使用壽命都是整數(shù)年,用頻率估計(jì)每輛車(chē)使用壽命的概率,以平均每輛單車(chē)所產(chǎn)生的利潤(rùn)的估計(jì)值為決策依據(jù),如果你是公司負(fù)責(zé)人,會(huì)選擇哪款車(chē)型?

參考數(shù)據(jù):,,,.

參考公式:相關(guān)系數(shù),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距等于,短軸與長(zhǎng)軸的長(zhǎng)度比等于.

(1)求橢圓的方程;

(2)設(shè)點(diǎn)在橢圓上,過(guò)作兩直線(xiàn),分別交橢圓于另外兩點(diǎn),當(dāng)的傾斜角互為補(bǔ)角時(shí),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)某校學(xué)生做了一個(gè)是否同意生“二孩”抽樣調(diào)查,該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計(jì)他們是同意父母生“二孩”還是反對(duì)父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計(jì)情況如下表:

同意

不同意

合計(jì)

男生

a

5

女生

40

d

合計(jì)

100

(1)求 a,d 的值;

(2)根據(jù)以上數(shù)據(jù),能否有97.5%的把握認(rèn)為是否同意父母生“二孩”與性別有關(guān)?請(qǐng)說(shuō)明理由;

附:

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)存在極小值點(diǎn),求的取值范圍;

(2)當(dāng)時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名大學(xué)生因?yàn)閷W(xué)習(xí)需要,欲各自選購(gòu)一臺(tái)筆記本電腦,他們決定在A,B,C三個(gè)品牌的五款產(chǎn)品中選擇,這五款筆記本電腦在某電商平臺(tái)的價(jià)格與銷(xiāo)量數(shù)據(jù)如表所示:

品牌

A

B

C

型號(hào)

A1

A2

B1

B2

C1

價(jià)格(元)

6000

7500

10000

8000

4500

銷(xiāo)量(臺(tái))

1000

1000

200

800

3000

(Ⅰ)若甲選擇某品牌的筆記本電腦的概率與該品牌的總銷(xiāo)量成正比,求他選擇B品牌的筆記本電腦的概率;

(Ⅱ)若甲、乙兩人選擇每種型號(hào)的筆記本電腦的概率都相等,且兩人選購(gòu)的型號(hào)不相同,求他們兩人購(gòu)買(mǎi)的筆記本電腦的價(jià)格之和大于15000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①若線(xiàn)性回歸方程為,則當(dāng)變量增加一個(gè)單位時(shí),一定增加3個(gè)單位;②將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,方差不會(huì)改變;③線(xiàn)性回歸直線(xiàn)方程必過(guò)點(diǎn);④抽簽法屬于簡(jiǎn)單隨機(jī)抽樣;其中錯(cuò)誤的說(shuō)法是(

A.①③B.②③④C.D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形是菱形,,,且交于點(diǎn)上任意一點(diǎn).

1)求證;

2)已知二面角的余弦值為,若的中點(diǎn),求與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案