在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,點(diǎn)E在棱CC1上,點(diǎn)F是棱C1D1的中點(diǎn).
(I)若點(diǎn)E是棱CC1的中點(diǎn),求證:EF平面A1BD;
(II)試確定點(diǎn)E的位置,使得A1-BD-E為直二面角,并說(shuō)明理由.
(I)證明:(1)連接CD1∵四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形
∴A1D1AD,ADBC,A1D1=AD,AD=BC;
∴A1D1BC,A1D1=BC,∴四邊形A1BCD1為平行四邊形;
∴A1BD1C(3分)
∵點(diǎn)E、F分別是棱CC1、C1D1的中點(diǎn);
∴EFD1C
又∴EFA1B又∵A1B?平面A1DB,EF?面A1DB;∴EF平面A1BD(6分)
(II)連接AC交BD于點(diǎn)G,連接A1G,EG
∵四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,底面ABCD是菱形
∴AA1⊥AB,AA1⊥AD,EC⊥BC,EC⊥DC,AD=AB,BC=CD
∵底面ABCD是菱形,∴點(diǎn)G為BD中點(diǎn),∴A1G⊥BD,EG⊥BD
∴∠A1GE為直二面角A1-BD-E的平面角,∴∠A1GE=90°(3分)
在棱形ABCD中,∠DAB=60°,AB=2,∴∠ABC=120°,
∴AC=
AB2+BC2-2AB•BC•cos1202
=2
8

∴AG=GC=
8
(10分)
在面ACC1A1中,△AGA1,△GCE為直角三角形
∵∠A1GE=90°∴∠EGC+∠A1GA=90°,
∴∠EGC=∠AA1G,
∴Rt△A1AGRt△ECG(12分)
EC
CG
=
AG
AA1
?EC=
3
4

所以當(dāng)EC=
3
4
時(shí),A1-BD-E為直二面角.(15分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,點(diǎn)E在棱CC1上,點(diǎn)F是棱C1D1的中點(diǎn).
(I)若點(diǎn)E是棱CC1的中點(diǎn),求證:EF∥平面A1BD;
(II)試確定點(diǎn)E的位置,使得A1-BD-E為直二面角,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,點(diǎn)E在棱CC1上,點(diǎn)E是棱C1C上一點(diǎn).
(1)求證:無(wú)論E在任何位置,都有A1E⊥BD
(2)試確定點(diǎn)E的位置,使得A1-BD-E為直二面角,并說(shuō)明理由.
(3)當(dāng)E為CC1中點(diǎn)時(shí),求四面體A1-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,點(diǎn)E在棱CC1上,點(diǎn)E是棱C1C上一點(diǎn).
(1)求證:無(wú)論E在任何位置,都有A1E⊥BD
(2)試確定點(diǎn)E的位置,使得A1-BD-E為直二面角,并說(shuō)明理由.
(3)試確定點(diǎn)E的位置,使得四面體A1-BDE體積最大.并求出體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省名校新高考研究聯(lián)盟高三(上)12月第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在四棱柱ABC-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是菱形,∠DAB=60°,AA1=4,AB=2,點(diǎn)E在棱CC1上,點(diǎn)F是棱C1D1的中點(diǎn).
(I)若點(diǎn)E是棱CC1的中點(diǎn),求證:EF∥平面A1BD;
(II)試確定點(diǎn)E的位置,使得A1-BD-E為直二面角,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案