【題目】甲、乙兩人同時參加一次數學測試,共有道選擇題,每題均有個選項,答對得分,答錯或不答得分.甲和乙都解答了所有的試題,經比較,他們只有道題的選項不同,如果甲最終的得分為分,那么乙的所有可能的得分值組成的集合為____________.
科目:高中數學 來源: 題型:
【題目】已知拋物線()與雙曲線(,)有相同的焦點,點是兩條曲線的一個交點,且軸,則該雙曲線經過一、三象限的漸近線的傾斜角所在的區(qū)間是( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有次水下考古活動中,潛水員需潛入水深為30米的水底進行作業(yè),其用氧量包含以下三個方面:①下潛時,平均速度為每分鐘米,每分鐘的用氧量為升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時,速度為每分鐘米,每分鐘用氧量為0.2升;設潛水員在此次考古活動中的總用氧量為升;
(1)將表示為的函數;
(2)若,求總用氧量的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近來天氣變化無常,陡然升溫、降溫幅度大于的天氣現象出現增多.陡然降溫幅度大于容易引起幼兒傷風感冒疾病.為了解傷風感冒疾病是否與性別有關,在某婦幼保健院隨機對人院的名幼兒進行調查,得到了如下的列聯(lián)表,若在全部名幼兒中隨機抽取人,抽到患傷風感冒疾病的幼兒的概率為,
(1)請將下面的列聯(lián)表補充完整;
患傷風感冒疾病 | 不患傷風感冒疾病 | 合計 | |
男 | 25 | ||
女 | 20 | ||
合計 | 100 |
(2)能否在犯錯誤的概率不超過的情況下認為患傷風感冒疾病與性別有關?說明你的理由;
(3)已知在患傷風感冒疾病的名女性幼兒中,有名又患黃痘病.現在從患傷風感冒疾病的名女性中,選出名進行其他方面的排查,記選出患黃痘病的女性人數為,求的分布列以及數學期望.下面的臨界值表供參考:
參考公式:,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若,求的單調區(qū)間;
(2)若關于的方程有四個不同的解,求實數應滿足的條件;
(3)在(2)條件下,若成等比數列,用表示t.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,一智能掃地機器人在A處發(fā)現位于它正西方向的B處和北偏東方向上的C處分別有需要清掃的垃圾,紅外線感應測量發(fā)現機器人到B的距離比到C的距離少0.4m,于是選擇沿路線清掃.已知智能掃地機器人的直線行走速度為0.2m/s,忽略機器人吸入垃圾及在B處旋轉所用時間,10秒鐘完成了清掃任務.
(1)B、C兩處垃圾的距離是多少?(精確到0.1)
(2)智能掃地機器人此次清掃行走路線的夾角是多少?(用反三角函數表示)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了配合今年上海迪斯尼游園工作,某單位設計了統(tǒng)計人數的數學模型:以表示第個時刻進入園區(qū)的人數;以表示第個時刻離開園區(qū)的人數.設定以分鐘為一個計算單位,上午點分作為第個計算人數單位,即;點分作為第個計算單位,即;依次類推,把一天內從上午點到晚上點分分成個計算單位(最后結果四舍五入,精確到整數).
(1)試計算當天點至點這一小時內,進入園區(qū)的游客人數、離開園區(qū)的游客人數各為多少?
(2)假設當日園區(qū)游客總人數達到或超過萬時,園區(qū)將采取限流措施.該單位借助該數學模型知曉當天點(即)時,園區(qū)總人數會達到最高,請問當日是否要采取限流措施?說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com