等差數(shù)列{an}的公差不為零,首項a1=1,a2是a1和a5的等比中項,則數(shù)列{an}的前10項之和是(  )
A、90B、100C、145D、190
分析:此數(shù)列為等差數(shù)列,要求前10項之和,根據(jù)等差數(shù)列的求和公式在首項已知的情況下還需知道等差數(shù)列的公差,可根據(jù)第二項是第一第五項的比例中項求出公差.
解答:解:.由題意知,(a1+d)2=a1(a1+4d),
即a12+2a1d+d2=a12+4a1d,
∴d=2a1=2.
∴S10=10a1+
10×9
2
d=10+90=100.
故選B
點(diǎn)評:此題考查的內(nèi)容為等差數(shù)列的性質(zhì)、等比數(shù)列的性質(zhì)以及等差數(shù)列的求和公式,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果一個數(shù)列的各項都是實(shí)數(shù),且從第二項開始,每一項與它前一項的平方差是相同的常數(shù),則稱該數(shù)列為等方差數(shù)列,這個常數(shù)叫這個數(shù)列的公方差.
(1)設(shè)數(shù)列{an}是公方差為p的等方差數(shù)列,求an和an-1(n≥2,n∈N)的關(guān)系式;
(2)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,證明該數(shù)列為常數(shù)列;
(3)設(shè)數(shù)列{an}是首項為2,公方差為2的等方差數(shù)列,若將a1,a2,a3,…,a10這種順序的排列作為某種密碼,求這種密碼的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

按照等差數(shù)列的定義我們可以定義“等和數(shù)列”:在一個數(shù)列中,如果每一項與它的后一項的和都為同一個常數(shù),那么這個數(shù)列叫做等和數(shù)列,這個常數(shù)叫做該數(shù)列的公和.已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,那么a8的值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)如果一個數(shù)列的各項都是實(shí)數(shù),且從第二項起,每一項與它的前一項的平方差是同一個常數(shù),則稱該數(shù)列為等方差數(shù)列,這個常數(shù)叫這個數(shù)列的公方差.
(Ⅰ)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,求證:該數(shù)列是常數(shù)列;
(Ⅱ)已知數(shù)列{an}是首項為2,公方差為2的等方差數(shù)列,數(shù)列{bn}的前n項和為Sn,且滿足an2=2n+1bn.若不等式2nSn>m•2n-2an2對?n∈N*恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一個數(shù)列的各項均為實(shí)數(shù),且從第二項起開始,每一項的平方與它前一項的平方的差都是同一個常數(shù),則稱該數(shù)列為等方差數(shù)列,這個常數(shù)叫做這個數(shù)列的公方差.
(1)若數(shù)列{bn}是等方差數(shù)列,b1=1,b2=3,求b7;
(2)是否存在一個非常數(shù)數(shù)列的等差數(shù)列或等比數(shù)列,同時也是等方差數(shù)列?若存在,求出這個數(shù)列;若不存在,說明理由.
(3)若正項數(shù)列{an}是首項為2、公方差為4的等方差數(shù)列,數(shù)列{
1
an
}
的前n項和為Tn,是否存在正整數(shù)p,q,使不等式Tn
pn+q
-1
對一切n∈N*都成立?若存在,求出p,q的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若各項都是實(shí)數(shù)的數(shù)列從第二項起,每一項與它前一項的平方差是同一常數(shù),則稱該數(shù)列為等方差數(shù)列,這個常數(shù)叫這個數(shù)列的公方差.
(Ⅰ)若數(shù)列{an}是等差數(shù)列,前n項和為Tn,并且an2=T2n-1,求通項an;
(Ⅱ)若數(shù)列{an}是首項為2,公方差為2的等方差數(shù)列,數(shù)列{bn}的前n項和為Sn,且an2=2n+1bn2nSn>m•2n-2an2對?n∈N*恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案