【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),且經(jīng)過(guò)點(diǎn),它的一個(gè)焦點(diǎn)與拋物線E:的焦點(diǎn)重合,斜率為k的直線l交拋物線E于A、B兩點(diǎn),交橢圓于C、D兩點(diǎn).
(1)求橢圓的方程;
(2)直線l經(jīng)過(guò)點(diǎn),設(shè)點(diǎn),且的面積為,求k的值;
(3)若直線l過(guò)點(diǎn),設(shè)直線,的斜率分別為,,且,,成等差數(shù)列,求直線l的方程.
【答案】(1)
(2)
(3)
【解析】
(1)由題知得到,解方程組即可.
(2)設(shè)直線:,由得:.利用弦長(zhǎng)公式和點(diǎn)到直線的距離公式即可得到,解方程即可.
(3)設(shè)直線:,帶入橢圓方程得到.根據(jù)韋達(dá)定理和等差中項(xiàng)的性質(zhì)得到,解方程即可求出直線方程.
(1)設(shè)橢圓的方程為,
由題設(shè)得,∴.
∴橢圓的方程是.
(2)設(shè)直線:,設(shè),,
由得:.
,.
與拋物線有兩個(gè)交點(diǎn),,,
則.
到的距離,
又,所以.
,故.
(3)設(shè)直線:,設(shè),,
由消去得:.
因?yàn)?/span>在橢圓內(nèi)部,所以與橢圓恒有兩個(gè)交點(diǎn),
所以.
由,,成等差數(shù)列得.
.
所以解得:.
所以直線的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱柱中,平面,,點(diǎn)、分別在棱、上,且,,,.
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列和滿足:,,且對(duì)一切,均有.
(1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)設(shè),記數(shù)列的前項(xiàng)和為,求正整數(shù),使得對(duì)任意,均有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分別是AB,PD的中點(diǎn),且PA=AD.
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)求證:平面PEC⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的各項(xiàng)均為整數(shù),其前n項(xiàng)和為.規(guī)定:若數(shù)列滿足前r項(xiàng)依次成公差為1的等差數(shù)列,從第項(xiàng)起往后依次成公比為2的等比數(shù)列,則稱數(shù)列為“r關(guān)聯(lián)數(shù)列”.
(1)若數(shù)列為“6關(guān)聯(lián)數(shù)列”,求數(shù)列的通項(xiàng)公式;
(2)在(1)的條件下,求出,并證明:對(duì)任意,;
(3)若數(shù)列為“6關(guān)聯(lián)數(shù)列”,當(dāng)時(shí),在與之間插入n個(gè)數(shù),使這個(gè)數(shù)組成一個(gè)公差為的等差數(shù)列,求,并探究在數(shù)列中是否存在三項(xiàng),,其中m,k,p成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項(xiàng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
給定橢圓,稱圓心在原點(diǎn),半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到F的距離為.
(I)求橢圓C的方程和其“準(zhǔn)圓”方程;
(II )點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線,使得與橢圓C都只有一個(gè)交點(diǎn),且分別交其“準(zhǔn)圓”于點(diǎn)M,N.
(1)當(dāng)P為“準(zhǔn)圓”與軸正半軸的交點(diǎn)時(shí),求的方程;
(2)求證:|MN|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了檢測(cè)某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認(rèn)為該零件屬“不合格”的零件,其中,分別為樣本平均和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出個(gè)零件,標(biāo)上記號(hào),并從這個(gè)零件中再抽取個(gè),求再次抽取的個(gè)零件中恰有個(gè)尺寸小于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中,真命題是( 。
A.和兩條異面直線都相交的兩條直線是異面直線
B.和兩條異面直線都相交于不同點(diǎn)的兩條直線是異面直線
C.和兩條異面直線都垂直的直線是異面直線的公垂線
D.若、是異面直線,、是異面直線,則、是異面直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnxa,f′(x)是f(x)的導(dǎo)函數(shù),若關(guān)于x的方程f′(x)0有兩個(gè)不等的根,則實(shí)數(shù)a的取值范圍是_____
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com