已知函數(shù),.
(1)當(dāng)時,求曲線在點處的切線方程;
(2)若在區(qū)間上是減函數(shù),求的取值范圍.
(1) (2)或.
解析試題分析:解:(1)當(dāng)時,,又,所以.
又, 所以所求切線方程為 ,即.
所以曲線在點處的切線方程為. 6分
(2)因為,
令,得或. 8分
當(dāng)時,恒成立,不符合題意. 9分
當(dāng)時,的單調(diào)遞減區(qū)間是,若在區(qū)間上是減函數(shù),
則解得. 10分
當(dāng)時,的單調(diào)遞減區(qū)間是,若在區(qū)間上是減函數(shù),
則,解得.
綜上所述,實數(shù)的取值范圍是或. 12分
考點:導(dǎo)數(shù)的運(yùn)用
點評:主要是考查了導(dǎo)數(shù)的幾何意義的運(yùn)用,以及運(yùn)用導(dǎo)數(shù)判定函數(shù)單調(diào)性,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域為,若在上為增函數(shù),則稱 為“一階比增函數(shù)”.
(Ⅰ) 若是“一階比增函數(shù)”,求實數(shù)的取值范圍;
(Ⅱ) 若是“一階比增函數(shù)”,求證:,;
(Ⅲ)若是“一階比增函數(shù)”,且有零點,求證:有解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)滿足,其中a>0,a≠1.
(1)對于函數(shù),當(dāng)x∈(-1,1)時,f(1-m)+f(1-m2)<0,求實數(shù)m的取值集合;
(2)當(dāng)x∈(-∞,2)時,的值為負(fù)數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x-ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對任意的x∈[0,+∞),有f(x)≤kx2成立,求實數(shù)k的最小值.]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若存在實常數(shù)和,使得函數(shù)和對其定義域上的任意實數(shù)分別滿足:和,則稱直線為和的“隔離直線”.已知,為自然對數(shù)的底數(shù)).
(Ⅰ)求的極值;
(Ⅱ)函數(shù)和是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)試問該函數(shù)能否在處取到極值?若有可能,求實數(shù)的值;否則說明理由;
(2)若該函數(shù)在區(qū)間上為增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
有一枚正方體骰子,六個面分別寫1、2、3、4、5、6的數(shù)字,規(guī)定“拋擲該枚骰子得到的數(shù)字是拋擲后,面向上的那一個數(shù)字”.已知和是先后拋擲該枚骰子得到的數(shù)字,函數(shù)
(1)若先拋擲骰子得到的數(shù)字是3,求再次拋擲骰子時,使函數(shù)有零點的概率;
(2)求函數(shù)在區(qū)間(-3,+∞)上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=,g(x)=2|x|+a.
(1)當(dāng)a=0時,解不等式f(x)≥g(x);
(2)若存在x∈ R,使得f(x)≥g(x)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com