設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤π)的圖象的最高點(diǎn)D的坐標(biāo)為(2,
2
)
,由最高點(diǎn)運(yùn)動(dòng)到相鄰的最低點(diǎn)F時(shí),曲線與x軸相交于點(diǎn)E(6,0).
(1)求A、ω、φ的值;
(2)求函數(shù)y=g(x),使其圖象與y=f(x)圖象關(guān)于直線x=8對(duì)稱.
分析:(1)利用函數(shù)的最高點(diǎn)求出A,求出函數(shù)的周期,即可求ω,利用最高點(diǎn)結(jié)合φ的范圍求出它的值;
(2)通過(guò)函數(shù)y=g(x),使其圖象與y=f(x)圖象關(guān)于直線x=8對(duì)稱,利用對(duì)稱點(diǎn)軌跡方程的求法求解即可.
解答:(本小題滿分10分)
解:(1)最高點(diǎn)D(2,
2
) A=
2

由題意
T
4
=6-2=4,T=16,T=
ω
,∴ω=
π
8
∴f(x)=
2
sin(
π
8
+φ),
∵過(guò)最高點(diǎn)D(2,
2
),∴
π
8
×2+φ=2kπ+
π
2
,φ=2kπ+
π
4

綜上,A=
2
,ω=
π
8
,φ=
π
4

(2)設(shè)P(x,y)為y=g(x)上任一點(diǎn),Q(xo,yo)是f(x)上關(guān)于x=8對(duì)稱點(diǎn).
y=yo,
x+x0
2
=8   y=yo,xo=16-x  又yo=
2
sin(
π
8
x0+
π
4
)

y=
2
sin[
π
8
×(16-x)+
π
4
]
=
2
sin(2π-
π
8
x+
π
4
)
=
2
sin(-
π
8
x+
π
4
)
點(diǎn)評(píng):本題考查三角函數(shù)的參數(shù)的含義,函數(shù)解析式的求法,考查轉(zhuǎn)化思想與計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí)f(x)>1,且對(duì)任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y).?dāng)?shù)列{an}滿足f(an+1)=
1f(-2-an)
(n∈N*
(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(diǎn)(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當(dāng)n>M時(shí),a n>f(0)恒成立?若存在,求出M的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí)f(x)>1,且對(duì)任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y).?dāng)?shù)列{an}滿足f(an+1)=
1
f(-2-an)
(n∈N*)

(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(diǎn)(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當(dāng)n>M時(shí),an>0恒成立?若存在,求出M的最小值,若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)若a1=f(0),不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(1+logf(1)x)
對(duì)不小于2的正整數(shù)恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
3x-1
x+1

(1)已知s=-t+
1
2
(t>1),求證:f(
t-1
t
)=
s+1
s
;
(2)證明:存在函數(shù)t=φ(s)=as+b(s>0),滿足f(
s+1
s
)=
t-1
t
;
(3)設(shè)x1=
11
17
,xn+1=f(xn),n=1,2,….問:數(shù)列{
1
xn-1
}是否為等差數(shù)列?若是,求出數(shù)列{xn}中最大項(xiàng)的值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省惠州一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí)f(x)>1,且對(duì)任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y).?dāng)?shù)列{an}滿足f(an+1)=(n∈N*
(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(diǎn)(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當(dāng)n>M時(shí),a n>f(0)恒成立?若存在,求出M的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省惠州一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí)f(x)>1,且對(duì)任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y).?dāng)?shù)列{an}滿足
(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(diǎn)(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當(dāng)n>M時(shí),an>0恒成立?若存在,求出M的最小值,若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)若a1=f(0),不等式對(duì)不小于2的正整數(shù)恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案