求符合下列條件的橢圓標準方程:
(1)焦距為8,離心率為0.8 ;
(2)焦點與長軸較接近的端點的距離為,焦點與短軸兩端點的連線互相垂直。
(1)
(2)
(1)設橢圓方程為
2c="8"    c=4
e=    a=5
b=3
橢圓方程為
(2)設橢圓方程為
焦點坐標為(-c,0)(c,o)

解得:
所以 
橢圓方程為:
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓上一點P到右焦點的距離是長軸兩端點到右焦點距離的等差中項,則P點的坐標為        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的離心率為=,點是橢圓上的一點,且點到橢圓兩焦點的距離之和為4.
(1)求橢圓的方程;
(2)橢圓上一動點關于直線的對稱點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓被直線截得的弦長為                   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,是橢圓上的一點,是橢圓的左焦點,且,則點到該橢圓左準線的距離為____________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

長短軸之比為三比二,一個焦點是(0.-2) 中心在原點的橢圓方程是          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在x軸上,一個頂點A(0,-1),且右焦點到右準線的距離為.
(1)求橢圓的方程.
(2)試問是否能找到一條斜率為k(k≠0)的直線l,使l與橢圓交于不同兩點M、N且滿足|AM|=|AN|?若這樣的直線存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

中心在原點,準線方程為x=±4,離心率為的橢圓方程是(    )
A.="1"B.=1
C.+y2="1"D.x2+=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

F1、F2是橢圓+y2=1的左、右焦點,點P在橢圓上運動,則|PF1|·|PF2|的最大值是_________________.

查看答案和解析>>

同步練習冊答案