過橢圓C:數(shù)學公式的一個焦點F且垂直于x軸的直線交橢圓于點數(shù)學公式
(1)求橢圓C的方程;
(2)橢圓C的左、右頂點A、B,左、右焦點分別為F1,F(xiàn)2,P為以F1F2為直徑的圓上異于F1,F(xiàn)2的動點,問數(shù)學公式是否為定值,若是求出定值,不是說明理由?
(3)是否存在過點Q(-2,0)的直線l與橢圓C交于兩點M、N,使得數(shù)學公式(其中D為弦MN的中點)?若存在,求出直線l的方程:若不存在,請說明理由.

解:(1)由題設(shè)知c=1,①,又a2=b2+c2,即a2=b2+1②,
聯(lián)立①②解得a2=2,b2=1,
所以橢圓C的方程為
(2)由(1)知,A(-,0),B(,0),F(xiàn)1(-1,0),F(xiàn)2(1,0),
設(shè)P(x0,y0)(x0≠±1),則=(x0+1,y0),=(x0-1,y0),
因為P為以F1F2為直徑的圓上的動點,所以,即=0,
所以(x0+1)(x0-1)+y02=-1=0,即=1,
所以=(,y0)•(,y0)═()•()+y02=-2=1-2=-1.
是定值,為-1.
(3)假設(shè)存在滿足條件的直線l,設(shè)直線l的方程為y=k(x+2),
得(2k2+1)x2+8k2x+8k2-2=0,則△=64k4-4(2k2+1)(8k2-2)>0,即③,
設(shè)M(x1,y1),N(x2,y2),則
由D為弦MN的中點,且,得FM⊥FN,即,
所以(x1+1,y1)•(x2+1,y2)=(x1+1)•(x2+1)+y1y2=x1x2+x1+x2+1+k2(x1+1)(x2+1)=0,即(k2+1)x1x2+(2k2+1)(x1+x2)+4k2+1=0,
所以(k2+1)•+(2k2+1)•+4k2+1=0,
解得,不滿足③式,
故不存在這樣的直線l.
分析:(1)由題設(shè)知c=1,,又a2=b2+c2,聯(lián)立方程組解出即可;
(2)設(shè)P(x0,y0)(x0≠±1),P為以F1F2為直徑的圓上的動點,所以,即=0,利用向量數(shù)量積運算可得=1,由此可算出的值;
(3)假設(shè)存在滿足條件的直線l,設(shè)直線l的方程為y=k(x+2),由得(2k2+1)x2+8k2x+8k2-2=0,則△>0③,設(shè)M(x1,y1),N(x2,y2),由D為弦MN的中點,且,得M⊥FN,即,根據(jù)向量數(shù)量積運算及韋達定理可表示為k的方程,解出k值,驗證是否滿足③式即可;
點評:本題考查直線與圓錐曲線的位置關(guān)系、平面向量數(shù)量積的運算及橢圓方程的求解,考查學生綜合運用所學知識分析解決問題的能力,綜合性強,能力要求較高.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2013-2014學年江西師大附中,臨川一中高三期末聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題

已知橢圓C的一個焦點是(10),兩個焦點與短軸的一個端點構(gòu)成等邊三角形.

1)求橢圓C的方程;

2)過點Q4,0)且不與坐標軸垂直的直線l交橢圓CA、B兩點,設(shè)點A關(guān)于x軸的

對稱點為A1.求證:直線A1Bx軸上一定點,并求出此定點坐標.

 

查看答案和解析>>

科目:高中數(shù)學 來源:天津模擬題 題型:解答題

如圖,橢圓C:的一個焦點為F(1,0),且過點(2,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若垂直于x軸的動直線與橢圓交于A,B兩點,直線l:x=4與x軸交于點N,直線AF與BN交于點M.
(ⅰ)求證:點M恒在橢圓C上;
(ⅱ)求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分13分)

如圖所示,橢圓C:的一個焦點為 F(1,0),且過點

(1)求橢圓C的方程;

(2)已知A、B為橢圓上的點,且直線AB垂直于軸,  

直線=4與軸交于點N,直線AF與BN交

于點M。

(ⅰ)求證:點M恒在橢圓C上;

(ⅱ)求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年安徽省巢湖市高三(上)質(zhì)量檢測數(shù)學試卷(理科)(解析版) 題型:填空題

給出下列命題:
①已知橢圓的兩個焦點為F1,F(xiàn)2,則這個橢圓上存在六個不同的點M,使得△F1MF2為直角三角形;
②已知直線l過拋物線y=2x2的焦點,且與這條拋物線交于A,B兩點,則|AB|的最小值為2;
③若過雙曲線C:的一個焦點作它的一條漸近線的垂線,垂足為M,O為坐標原點,則|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩個圓恰有2條公切線.
其中正確命題的序號是    .(把你認為正確命題的序號都填上)

查看答案和解析>>

同步練習冊答案