【題目】已知Sn是等比數(shù)列{an}的前n項和,S3 , S9 , S6成等差數(shù)列. (Ⅰ)求證:a2 , a8 , a5成等差數(shù)列;
(Ⅱ)若等差數(shù)列{bn}滿足b1=a2=1,b3=a5 , 求數(shù)列{an3bn}的前n項和Tn .
【答案】證明:(Ⅰ)設(shè)等比數(shù)列{an}的公比為q. 當(dāng)q=1時,顯然S3+S6≠2S9 , 與已知S3 , S9 , S6成等差數(shù)列矛盾,
∴q≠1.由S3+S6=2S9 , 可得 + =2 ,
化為:1+q3=2q6 , ∴a2+a5= = =2a8 .
∴a2 , a8 , a5成等差數(shù)列.
(Ⅱ)解:由(Ⅰ)1+q3=2q6 , 解得q3=1(舍去),q3=﹣ .
∴ = = = .
b1=a2=1,b3=a5=﹣ ,
數(shù)列{bn}的公差d= (b3﹣b1)=﹣ .
∴bn=﹣ + ,
故 = ,
Tn= + +…+ ,①
= +…+ + ②
① ﹣②得: =﹣2+ ﹣ =﹣2﹣ ﹣ = + ,
解得Tn=﹣ + .
【解析】(Ⅰ)設(shè)等比數(shù)列{an}的公比為q.當(dāng)q=1時,顯然S3+S6≠2S9 , 與已知S3 , S9 , S6成等差數(shù)列矛盾,可得q≠1.由S3+S6=2S9 , 利用求和公式化為:1+q3=2q6 , 即可證明a2 , a8 , a5成等差數(shù)列.(Ⅱ)由(Ⅰ)1+q3=2q6 , 解得q3=﹣ .可得 = = = .b1=a2=1,b3=a5=﹣ ,可得bn=﹣ + , = ,再利用“錯位相減法”與等比數(shù)列的求和公式即可得出.
【考點精析】解答此題的關(guān)鍵在于理解等差數(shù)列的通項公式(及其變式)的相關(guān)知識,掌握通項公式:或,以及對數(shù)列的前n項和的理解,了解數(shù)列{an}的前n項和sn與通項an的關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】C.[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系 中,已知直線 (l為參數(shù))與曲線 ( 為參數(shù))相交于 , 兩點,求線段 的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣1)ex+ax2有兩個零點. (Ⅰ)求a的取值范圍;
(Ⅱ)設(shè)x1 , x2是f(x)的兩個零點,證明x1+x2<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來我國電子商務(wù)行業(yè)迎來篷布發(fā)展的新機(jī)遇,2015年雙11期間,某購物平臺的銷售業(yè)績高達(dá)918億人民幣.與此同時,相關(guān)管理部門推出了針對電商的商品和服務(wù)的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進(jìn)行統(tǒng)計,對商品的好評率為0.6,對服務(wù)的好評率為0.75,其中對商品和服務(wù)都做出好評的交易為80次.
(1)是否可以在犯錯誤概率不超過0.1%的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān)?
(2)若將頻率視為概率,某人在該購物平臺上進(jìn)行的5次購物中,設(shè)對商品和服務(wù)全好評的次數(shù)為隨機(jī)變量X: ①求對商品和服務(wù)全好評的次數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學(xué)期望和方差.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
( ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)是二次函數(shù),若f(x)ex的一個極值點為x=﹣1,則下列圖象不可能為f(x)圖象的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點F1、F2是雙曲線C: =1(a>0,b>0)的左、右焦點,O為坐標(biāo)原點,點P在雙曲線C的右支上,且滿足|F1F2|=2|OP|,|PF1|≥3|PF2|,則雙曲線C的離心率的取值范圍為( )
A.(1,+∞)
B.[ ,+∞)
C.(1, ]
D.(1, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xe2x﹣lnx﹣ax.
(1)當(dāng)a=0時,求函數(shù)f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P( ,1)和橢圓C: + =1.
(1)設(shè)橢圓的兩個焦點分別為F1 , F2 , 試求△PF1F2的周長及橢圓的離心率;
(2)若直線l: x﹣2y+m=0(m≠0)與橢圓C交于兩個不同的點A,B,設(shè)直線PA與PB的斜率分別為k1 , k2 , 求證:k1+k2=0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O(shè)為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是2ρsin(θ+ )=3 ,射線OM:θ= 與圓C的交點為O、P,與直線l的交點為Q,求線段PQ的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com