【題目】如圖,在底面邊長為,側棱長為的正四棱柱中,是側棱上的一點,.

1)若,求異面直線所成角的余弦;

2)是否存在實數(shù),使直線與平面所成角的正弦值是?若存在,請求出的值;若不存在,請說明理由.

【答案】(1) (2)存在,

【解析】

1)采用建系法進行求解;

2)假設存在實數(shù),使得直線與平面所成角的正弦值是,則用向量法表示出,再求得平面的法向量為,結合夾角公式即可求得;

解:(1)建立空間直角坐標系,則,,,,.

所以,.

,即異面直線所成角的余弦是.

2)假設存在實數(shù),使直線與平面所成的角的正弦值等于,則

,.

設平面的法向量為,

則由,得,取,得平面的法向量為.

由直線與平面所成的角的正弦值等于,得

,解得,因為,所以滿足條件,

所以當時,直線與平面所成的角的正弦值等于.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若定義域均為D的三個函數(shù)f(x),g(x),h(x)滿足條件:對任意x∈D,點(x,g(x)與點(x,h(x)都關于點(x,f(x)對稱,則稱h(x)是g(x)關于f(x)的“對稱函數(shù)”.已知g(x)=,f(x)=2x+b,h(x)是g(x)關于f(x)的“對稱函數(shù)”,且h(x)≥g(x)恒成立,則實數(shù)b的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】紋樣是中國藝術寶庫的瑰寶,火紋是常見的一種傳統(tǒng)紋樣,為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內,并向該正方形內隨機投擲2000個點,己知恰有800個點落在陰影部分,據(jù)此可估計陰影部分的面積是

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】法國數(shù)學家布豐提出一種計算圓周率的方法——隨機投針法,受其啟發(fā),我們設計如下實驗來估計的值:先請200名同學每人隨機寫下一個橫、縱坐標都小于1的正實數(shù)對;再統(tǒng)計兩數(shù)的平方和小于1的數(shù)對的個數(shù);最后再根據(jù)統(tǒng)計數(shù)來估計的值.已知某同學一次試驗統(tǒng)計出,則其試驗估計______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,直線過點,且與拋物線交于、兩點,

1)求的取值范圍;

2)若,點的坐標為,直線與拋物線的另一個交點為,直線與拋物線的另一個交點為,直線軸交于點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點為,過(M不過橢圓的頂點和中心)且斜率為k直線l交橢圓于兩點,與y軸交于點N,且.

(1)若直線l過點,求的周長;

(2)若直線l過點,求線段的中點R的軌跡方程;

(3)求證:為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】業(yè)界稱中國芯迎來發(fā)展和投資元年,某芯片企業(yè)準備研發(fā)一款產(chǎn)品,研發(fā)啟動時投入資金為AA為常數(shù))元,之后每年會投入一筆研發(fā)資金,n年后總投入資金記為,經(jīng)計算發(fā)現(xiàn)當時,近似地滿足,其中,為常數(shù),.已知3年后總投入資金為研發(fā)啟動是投入資金的3倍,問:

1)研發(fā)啟動多少年后,總投入資金是研發(fā)啟動時投入資金的8倍;

2)研發(fā)啟動后第幾年投入的資金最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P到圓(x+22+y2=1的切線長與到y軸的距離之比為tt0t≠1);

1)求動點P的軌跡C的方程;

2)當時,將軌跡C的圖形沿著x軸向左移動1個單位,得到曲線G,過曲線G上一點Q作兩條漸近線的垂線,垂足分別是P1P2,求的值;

3)設曲線C的兩焦點為F1,F2,求t的取值范圍,使得曲線C上不存在點Q,使∠F1QF2=θ0θπ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)證明:,都有;

2)若函數(shù)有且只有一個零點,求的極值.

查看答案和解析>>

同步練習冊答案