如圖,拋物線的焦點(diǎn)到準(zhǔn)線的距離與橢圓的長半軸相等,設(shè)橢圓的右頂點(diǎn)為A,C1,C2在第一象限的交點(diǎn)為B,O為坐標(biāo)原點(diǎn),且△OAB的面積為
(1)求橢圓C2的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)A作直線l交C1于C,D兩點(diǎn),射線OC,OD分別交C2于E,F(xiàn)兩點(diǎn).
(I)求證:O點(diǎn)在以EF為直徑的圓的內(nèi)部;
(II)記△OEF,△OCD的面積分別為S1,S2,問是否存在直線l,使得S2=3S1?請說明理由.

【答案】分析:(1)p=2,得橢圓的長半軸a=2,由,知.代入拋物線能求出橢圓C2方程.
(2)(I)設(shè)直線l的方程為:x=my+2,由,得y2-4my-8=0,利用韋達(dá)定理和向量的數(shù)量積導(dǎo)出∠COD>90°,由此能證明O點(diǎn)在以EF為直徑的圓的內(nèi)部.
(II),直線OC的斜率為,故直線OC的方程為.由此能推導(dǎo)出不存在直線l使得S2=3S1
解答:解:(1)p=2,得橢圓的長半軸a=2,
,

代入拋物線求得
∴橢圓C2方程為
(2)(I)設(shè)直線l的方程為:x=my+2,
,得y2-4my-8=0,
設(shè)C(x1,y1),D(x2,y2),
∴y1+y2=4m,y1y2=-8,
∴x1x2=4,
,
∴∠COD>90°,
又∵∠EOF=∠COD,
∴∠EOF>90°,
∴O點(diǎn)在以EF為直徑的圓的內(nèi)部.
(II),
直線OC的斜率為,
∴直線OC的方程為
,

,
,
∵m∈R,∴,
∴不存在直線l使得S2=3S1
點(diǎn)評:本題考查橢圓方程的求法,考查點(diǎn)在圓的內(nèi)部的證明,探索滿足條件的直線方程是否存在.綜合性強(qiáng),難度大,對數(shù)學(xué)思維的要求較高.解題時要認(rèn)真審題,仔細(xì)解答,注意等價轉(zhuǎn)化思想的合理合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省高三入學(xué)摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題12分)

如圖,拋物線的焦點(diǎn)到準(zhǔn)線的距離與橢圓的長半軸相等,設(shè)橢圓的右頂點(diǎn)為在第一象限的交點(diǎn)為為坐標(biāo)原點(diǎn),且的面積為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)作直線兩點(diǎn),射線分別交兩點(diǎn).

(I)求證:點(diǎn)在以為直徑的圓的內(nèi)部;

(II)記的面積分別為,問是否存在直線,使得?請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市南開中學(xué)高三(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,拋物線的焦點(diǎn)到準(zhǔn)線的距離與橢圓的長半軸相等,設(shè)橢圓的右頂點(diǎn)為A,C1,C2在第一象限的交點(diǎn)為B,O為坐標(biāo)原點(diǎn),且△OAB的面積為
(1)求橢圓C2的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)A作直線l交C1于C,D兩點(diǎn),射線OC,OD分別交C2于E,F(xiàn)兩點(diǎn).
(I)求證:O點(diǎn)在以EF為直徑的圓的內(nèi)部;
(II)記△OEF,△OCD的面積分別為S1,S2,問是否存在直線l,使得S2=3S1?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南師大附中高三第六次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,拋物線的焦點(diǎn)到準(zhǔn)線的距離與橢圓的長半軸相等,設(shè)橢圓的右頂點(diǎn)為A,C1,C2在第一象限的交點(diǎn)為B,O為坐標(biāo)原點(diǎn),且△OAB的面積為
(1)求橢圓C2的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)A作直線l交C1于C,D兩點(diǎn),射線OC,OD分別交C2于E,F(xiàn)兩點(diǎn).
(I)求證:O點(diǎn)在以EF為直徑的圓的內(nèi)部;
(II)記△OEF,△OCD的面積分別為S1,S2,問是否存在直線l,使得S2=3S1?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖南省師大附中2010屆高三第二次月考(理) 題型:解答題

 

如圖,拋物線的頂點(diǎn)O在坐標(biāo)原點(diǎn),焦點(diǎn)在y軸負(fù)半軸上,過點(diǎn)M(0,-2)作直線l與拋物線相交于A,B兩點(diǎn),且滿足.

(Ⅰ)求直線l和拋物線的方程;

(Ⅱ)當(dāng)拋物線上一動點(diǎn)P從點(diǎn)A到B運(yùn)動時,求△ABP面積的最大值.

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案