如圖,在四棱錐中,底面是直角梯形,∥,,⊥平面SAD,點(diǎn)是的中點(diǎn),且,.
(1)求四棱錐的體積;
(2)求證:∥平面;
(3)求直線和平面所成的角的正弦值.
(1)證得側(cè)棱底面,體積。
(2)證得∥且,
由四邊形是平行四邊形,得到∥,推出∥平面 。
(3)直線和平面所成的角的正弦值是。
解析試題分析:(1)∵⊥底面,底面,底面
∴⊥, ⊥
∵,、是平面內(nèi)的兩條相交直線
∴側(cè)棱底面 2分
在四棱錐中,側(cè)棱底面,底面是直角梯形,
,,∴∥且,
所以,四棱錐的體積是。
(2)在四棱錐中,側(cè)棱底面,底面是直角梯形,
,
∴∥且,
∴∥且
∴四邊形是平行四邊形
∴∥
∵,
∴∥平面 8分
(3)∵側(cè)棱底面,底面
∴
∵垂直于,、是平面內(nèi)的兩條相交直線
∴,垂足是點(diǎn)
∴是在平面內(nèi)的射影,
∴是直線和平面所成的角
∵在中,,
∴
∴
∴ 直線和平面所成的角的正弦值是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,側(cè)棱底面,底面為矩形,為上一點(diǎn),,.
(I)若為的中點(diǎn),求證平面;
(II)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,底面,四邊形中,,,,.
(Ⅰ)求證:平面平面;
(Ⅱ)設(shè).
(ⅰ) 若直線與平面所成的角為,求線段的長;
(ⅱ) 在線段上是否存在一個(gè)點(diǎn),使得點(diǎn)到點(diǎn)的距離都相等?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四棱錐,底面是邊長為的正方形,⊥面,,過點(diǎn)作,連接.
(Ⅰ)求證:;
(Ⅱ)若面交側(cè)棱于點(diǎn),求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,多面體中,四邊形是邊長為的正方形,平面垂直于平面,且,,.
(Ⅰ)求證:;
(Ⅱ)若分別為棱和的中點(diǎn),求證:∥平面;
(Ⅲ)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三棱錐,平面平面,AB=AD=1,AB⊥AD,DB=DC,DB⊥DC
(1) 求證:AB⊥平面ADC;
(2) 求三棱錐的體積;
(3) 求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn).
(Ⅰ)證明: BC1//平面A1CD;
(Ⅱ)設(shè)AA1= AC=CB=2,AB=2,求三棱錐C一A1DE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖:是⊙的直徑,垂直于⊙所在的平面,PA="AC," 是圓周上不同于的任意一點(diǎn),(1) 求證:平面。(2) 求二面角 P-BC-A 的大小。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com