(本小題滿分12分)
在直三棱柱ABC—A1B1C1中,∠ABC=90°,BC=CC1,M、N分別為BB1
A1C1的中點(diǎn).
(1)求證:CB1⊥平面ABC1;
(2)求證:MN//平面ABC1.

詳見(jiàn)解析

解析試題分析:(1)根據(jù)直三棱柱的性質(zhì),利用面面垂直性質(zhì)定理證出平面,得出.正方形中,對(duì)角線,由線面垂直的判定定理可證出平面;(2)取的中點(diǎn),連,利用三角形中位線定理和平行四邊形的性質(zhì),證出,從而得到是平行四邊形,可得,結(jié)合線面平行判定定理即可證出
解:(1)在直三棱柱ABC—A1B1C1中,
側(cè)面BB1C1C⊥底面ABC,且側(cè)面BB1C1C∩底面ABC=BC,
∵∠ABC=90°,即AB⊥BC,
∴AB⊥平面BB1C­1                 2分
∵CB1平面BB1C1C,∴AB⊥CB1.        4分
,∴是正方形,
,∴CB1⊥平面ABC1.       6分
(2)取AC1的中點(diǎn)F,連BF、NF.       7分
在△AA1C1中,N、F是中點(diǎn),∴NFAA1,又∵BMAA1,∴EFBM,   8分
故四邊形BMNF是平行四邊形,∴MN//BF,    10分
而EF面ABC1,MN平面ABC1,∴MN//面ABC1 12分

考點(diǎn):1.直線與平面垂直的判定;2.直線與平面平行的判定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在如圖所示的幾何體中,AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
如圖1,直角梯形中, 四邊形是正方形,,.將正方形沿折起,得到如圖2所示的多面體,其中面,中點(diǎn).
(1) 證明:∥平面;
(2) 求三棱錐的體積.
     
圖1                     圖2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

正三棱柱中,,,D、E分別是的中點(diǎn),

(1)求證:面⊥面BCD;
(2)求直線與平面BCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在如圖的幾何體中,四邊形為正方形,四邊形為等腰梯形,,,,
(1)求證:平面
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P—ABCD中,側(cè)面PAD是正三角形,且垂直于底面ABCD,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,M為PC的中點(diǎn).
(1)求證:PA//平面BDM;
(2)求直線AC與平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:平面α∩平面β=l,α⊥平面γ,β⊥平面γ.
求證:l⊥γ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,點(diǎn)D在棱AB上.

(1)求證:AC⊥B1C;
(2)若D是AB中點(diǎn),求證:AC1∥平面B1CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2013•重慶)如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F(xiàn)為PC的中點(diǎn),AF⊥PB.
(1)求PA的長(zhǎng);
(2)求二面角B﹣AF﹣D的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案