【題目】已知定義在R上的函數(shù)g(x)=2x+2﹣x+|x|,則滿足g(2x﹣1)<g(3)的x的取值范圍是

【答案】(﹣1,2)
【解析】∵g(x)=2x+2﹣x+|x|,
∴g(﹣x)=2x+2﹣x+|﹣x|=2x+2﹣x+|x|=g(x),
則函數(shù)g(x)為偶函數(shù),
當x≥0時,g(x)=2x+2﹣x+x,
則g′(x)=ln2(2x﹣2﹣x)+1,
則當x≥0時,g′(x)>0,則函數(shù)g(x)在[0,+∞)上為增函數(shù),
則不等式g(2x﹣1)<g(3)等價為g(|2x﹣1|)<g(3),
即|2x﹣1|<3,
即﹣3<2x﹣1<3,
解得﹣1<x<2,
即x的取值范圍是(﹣1,2),
所以答案是:(﹣1,2).
【考點精析】認真審題,首先需要了解奇偶性與單調性的綜合(奇函數(shù)在關于原點對稱的區(qū)間上有相同的單調性;偶函數(shù)在關于原點對稱的區(qū)間上有相反的單調性).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知隨機變量x服從正態(tài)分布N(3,σ2),且P(x≤4)=0.84,則P(2<x<4)=(
A.0.84
B.0.68
C.0.32
D.0.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)是定義在(﹣∞,0)上的可導函數(shù),其導函數(shù)為f′(x),且有3f(x)+xf′(x)>0,則
不等式(x+2015)3f(x+2015)+27f(﹣3)>0的解集(
A.(﹣2018,﹣2015)
B.(﹣∞,﹣2016)
C.(﹣2016,﹣2015)
D.(﹣∞,﹣2012)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=﹣x3的圖象關于(
A.y軸對稱
B.直線y=﹣x對稱
C.坐標原點對稱
D.直線y=x對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|﹣1≤x≤1),集合B={x|x2﹣2x≤0),則集合A∩B=( 。
A.[﹣1,0]
B.[﹣1,2]
C.[0,1]
D.(一∞,1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】演繹推理“因為指數(shù)函數(shù)y=ax(a>0且a≠1)是增函數(shù),而y=2x是指數(shù)函數(shù),所以y=2x是增函數(shù)”,所得結論錯誤的原因是(
A.推理形式錯誤
B.小前提錯誤
C.大前提錯誤
D.小前提、大前提都錯誤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設全集U=R,集合A={x|x2﹣2x﹣3<0},B={x|0<x≤4}.
(1)求A∩B,A∪B;
(2)求(UA)∩(UB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,可以是奇函數(shù)的為(
A.f(x)=(x﹣a)|x|,a∈R
B.f(x)=x2+ax+1,a∈R
C.f(x)=log2(ax﹣1),a∈R
D.f(x)=ax+cosx,a∈R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若全集U=R,集合A={x|x2﹣x﹣2>0},則UA=(
A.(﹣1,2)
B.(﹣2,1)
C.[﹣1,2]
D.[﹣2,1]

查看答案和解析>>

同步練習冊答案