設(shè)雙曲線的右焦點為,左右頂點分別為,過且與雙曲線的一條漸近線平行的直線與另一條漸近線相交于,若恰好在以為直徑的圓上,則雙曲線的離心率為________ ______.

試題分析:根據(jù)題意,設(shè)出點F(C,0)根據(jù)題意過,過且與雙曲線的一條漸近線平行的直線
,因為的坐標(biāo)分別是(a,0)(-a,0)則恰好在以為直徑的圓上,|OP|=a,即,故填寫。
點評:解決雙曲線的離心率,一般主要是從定義和幾何性質(zhì)入手來分析得到a,b,c的關(guān)系,進(jìn)而求解得到結(jié)論。屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知直線經(jīng)過橢圓的左頂點A和上頂點D,橢圓的右頂點為,點和橢圓上位于軸上方的動點,直線,與直線分別交于兩點。

(I)求橢圓的方程;
(Ⅱ)求線段MN的長度的最小值;
(Ⅲ)當(dāng)線段MN的長度最小時,在橢圓上是否存在這
樣的點,使得的面積為?若存在,確定點的個數(shù),若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在平面直角坐標(biāo)系中,點到兩定點F1和F2的距離之和為,設(shè)點的軌跡是曲線.(1)求曲線的方程;   (2)若直線與曲線相交于不同兩點、(不是曲線和坐標(biāo)軸的交點),以為直徑的圓過點,試判斷直線是否經(jīng)過一定點,若是,求出定點坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點,點A,B分別在橢圓上,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線y2=2px(p>0)的焦點作傾斜角為30°的直線l與拋物線交于P,Q兩點,分別作PP¢、QQ¢垂直于拋物線的準(zhǔn)線于P¢、Q¢,若|PQ|=2,則四邊形PP¢Q¢Q的面積為
A.1B.2C.D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
雙曲線的中心為原點,焦點在軸上,兩條漸近線分別為,經(jīng)過右焦點垂直于的直線分別交兩點.已知成等差數(shù)列,且同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設(shè)被雙曲線所截得的線段的長為4,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,為橢圓上的一個動點,弦、分別過焦點,當(dāng)垂直于軸時,恰好有

(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè).
①當(dāng)點恰為橢圓短軸的一個端點時,求的值;
②當(dāng)點為該橢圓上的一個動點時,試判斷是否為定值?
若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若雙曲線的焦距為10,點在其漸近線上,則雙曲線的方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線在點           處的切線平行于直線。

查看答案和解析>>

同步練習(xí)冊答案