(本小題滿分12分)一工廠生產甲、乙、丙三種樣式的杯子,每種樣式均有和兩種型號,某天的產量如右表(單位:個):按樣式分層抽樣的方法在這個月生產的杯子中抽取個,其中有甲樣式杯子個.
型號 | 甲樣式 | 乙樣式 | 丙樣式 |
(1);(2).
解析試題分析:(1)先求出在丙、乙樣式的杯子中所抽取的杯子數目,然后利用分層抽樣中每層的入樣比相等得到乙樣式的杯子的總數,從而求出的值;(2)先確定所抽取的樣本中和杯子各自的數目,并進行編號,利用列舉法求出基本事件的總數與問題中涉及的事件所包含的基本事件,利用古典概型的概率計算公式求出相應事件的概率.
(1)設該廠本月生產的乙樣式的杯子為個,在丙樣式的杯子中抽取個,
由題意得,,所以,
則,所以,,,故;
(2)設所抽取樣本中有個的杯子,
因為分層抽樣的方法中在甲樣式杯子中抽取一個容量為的樣本,所以,解得,
也就是抽取了個杯子,個杯子,
分別記作、、、、,則從中任取個的所有的基本事件為:
、、、、、、、、、,
共個,其中至少有個的杯子的基本事件:
、、、、、、,
所以從中任取個,至少有個杯子的概率為.
考點:1.分層抽樣;2.古典概型
科目:高中數學 來源: 題型:解答題
某高校共有15000人,其中男生10500人,女生4500人,為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數據(單位:小時)
(1)應收集多少位女生樣本數據?
(2)根據這300個樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數據分組區(qū)間為:.估計該校學生每周平均體育運動時間超過4個小時的概率.
(3)在樣本數據中,有60位女生的每周平均體育運動時間超過4個小時.請完成每周平均體育運動時間與性別的列聯表,并判斷是否有的把握認為“該校學生的每周平均體育運動時間與性別有關”.
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知某單位有50名職工,現要從中抽取10名職工,將全體職工隨機按1~50編號,并按編號順序平均分成10組,按各組內抽取的編號依次增加5進行系統(tǒng)抽樣.
(1)若第5組抽出的號碼為22,寫出所有被抽出職工的號碼;
(2)分別統(tǒng)計這10名職工的體重(單位:公斤),獲得體重數據的莖葉圖如圖所示,求該樣本的方差;
(3)在(2)的條件下,從這10名職工中隨機抽取兩名體重不輕于73公斤(≥73公斤)的職工,求體重為76公斤的職工被抽取到的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某化肥廠甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30 min抽取一包產品,稱其重量,分別記錄抽查數據如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)這種抽樣方法是哪一種?
(2)將這兩組數據用莖葉圖表示;
(3)將兩組數據比較,說明哪個車間的產品較穩(wěn)定.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
從某校隨機抽取100名學生,獲得了他們一周課外閱讀時間(單位:小時)的數據,整理得到數據分組及頻數分布表和頻率分布直方圖:
(1)從該校隨機選取一名學生,試估計這名學生該周課外閱讀時間少于12小時的概率;
(2)求頻率分布直方圖中的a,b的值;
(3)假設同一組中的每個數據可用該組區(qū)間的中點值代替,試估計樣本中的100名學生該周課外閱讀時間的平均數在第幾組(只需寫出結論)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
從一批蘋果中,隨機抽取50個,其重量(單位:g)的頻數分布表如下:
分組(重量) | [80,85) | [85,90) | [90,95) | [95,100) |
頻數(個) | 5 | 10 | 20 | 15 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)(2011•福建)某日用品按行業(yè)質量標準分成五個等級,等級系數X依次為1,2,3,4,5.現從一批該日用品中隨機抽取20件,對其等級系數進行統(tǒng)計分析,得到頻率分布表如下:
X | 1 | 2 | 3 | 4 | 5 |
f | a | 0.2 | 0.45 | b | c |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
小區(qū)統(tǒng)計部門隨機抽查了區(qū)內名網友4月1日這天的網購情況,得到如下數據統(tǒng)計表(圖(1)).網購金額超過千元的顧客被定義為“網購紅人”,網購金額不超過千元的顧客被定義為“非網購紅人”.已知“非網購紅人”與“網購紅人”人數比恰為.
(1)確定的值,并補全頻率分布直方圖(圖(2)).
(2)為進一步了解這名網友的購物體驗,從“非網購紅人”和“網購紅人”中用分層抽樣的方法確定人,若需從這人中隨機選取人進行問卷調查,設為選取的人中“網購紅人”的人數,求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
“根據《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80 mg/100ml(不含80)之間,屬于酒后駕車,血液酒精濃度在80mg/100ml(含80)以上時,屬醉酒駕車.”某市交警在該市一交通崗前設點對過往的車輛進行抽查,經過一晚的抽查,共查出酒后駕車者60名,圖甲是用酒精測試儀對這60 名酒后駕車者血液中酒精濃度進行檢測后依所得結果畫出的頻率分布直方圖.
(1)統(tǒng)計方法中,同一組數據常用該組區(qū)間的中點值作為代表,圖乙的程序框圖是對這60名酒后駕車者血液的酒精濃度做進一步的統(tǒng)計,求出圖乙輸出的S的值,并說明S的統(tǒng)計意義;(圖乙中數據與分別表示圖甲中各組的組中值及頻率)
(2)本次行動中,吳、李兩位先生都被酒精測試儀測得酒精濃度屬于70~90的范圍,但他倆堅稱沒喝那么多,是測試儀不準,交警大隊隊長決定在被酒精測試儀測得酒精濃度屬于70~90范圍的酒后駕車者中隨機抽出2人抽血檢驗,設為吳、李兩位先生被抽中的人數,求的分布列,并求吳、李兩位先生至少有1人被抽中的概率;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com