如圖,矩形ABCD中,AB=3,BC=4.E,F(xiàn)分別在線段BC和AD上,EF∥AB,將矩形ABEF沿EF折起,記折起后的矩形為MNEF,且平面MNEF⊥平面ECDF.

(Ⅰ)求證:NC∥平面MFD;

(Ⅱ)若EC=3,求證:ND⊥FC;

(Ⅲ)求四面體NFEC體積的最大值.

答案:
解析:

  (1)證明:因?yàn)樗倪呅蜯NEF、EFDC都是矩形,

  所以MN∥EF∥CD,MN=EF=CD

  所以四邊形MNCD是平行四邊形,……………………2分

  所以NC∥MD,……………………3分

  因?yàn)镹C平面MFD,MD平面MFD,

  所以NC∥平面MFD……………………4分

  (II)證明:連接ED,設(shè)EDFC=O.

  因?yàn)槠矫鍹NEF平面ECDF,且NEEF,

  由面面垂直的性質(zhì)定理得NE平面ECDF……………………5分

  因?yàn)镕C平面ECDF,所以FCNE……………………6分

  因?yàn)镋C=CD,所以四邊形ECDF為正方形,所以FCED

  又EDNE=E,所以FC平面NED……………………7分

  因?yàn)镹D平面NED,所以NDFC……………………8分

  (III)解:設(shè)NE=X,則EC=4-x,其中0<x<4

  由(I)得NE平面FEC,

  所以四面體NFEC的體積為………………10分

  所以………………11分

  當(dāng)且僅當(dāng)x=4-x,即x=2時(shí),四面體NFEC的體積最大.………………12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=
8
3
3
,BC=2,橢圓M的中心和準(zhǔn)線分別是已知矩形的中心和一組對(duì)邊所在直線,矩形的另一組對(duì)邊間的距離為橢圓的短軸長(zhǎng),橢圓M的離心率大于0.7.
(I)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求橢圓M的方程;
(II)過橢圓M的中心作直線l與橢圓交于P,Q兩點(diǎn),設(shè)橢圓的右焦點(diǎn)為F2,當(dāng)∠PF2Q=
3
時(shí),求△PF2Q的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,AB=1,AD=2,M為AD的中點(diǎn),則
BM
BD
的值為
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A 若方程ax-x-a=0有兩個(gè)實(shí)數(shù)解,則a的取值范圍是
(1,+∞)
(1,+∞)

B 如圖,矩形ABCD中邊長(zhǎng)AB=2,BC=1,E為BC的中點(diǎn),若F為正方形內(nèi)(含邊界)任意一點(diǎn),則
AE
AF
的最大值為
9
2
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,DC=
3
,AD=1,在DC上截取DE=1,將△ADE沿AE翻折到D'點(diǎn),當(dāng)D'在平面ABC上的射影落在AE上時(shí),四棱錐D'-ABCE的體積是
2
6
-
2
12
2
6
-
2
12
;當(dāng)D'在平面ABC上的射影落在AC上時(shí),二面角D'-AE-B的平面角的余弦值是
2-
3
2-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)如圖,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)問BC邊上是否存在Q點(diǎn),使
PQ
QD
,說明理由.
(2)問當(dāng)Q點(diǎn)惟一,且cos<
BP
QD
>=
10
10
時(shí),求點(diǎn)P的位置.

查看答案和解析>>

同步練習(xí)冊(cè)答案