(本小題滿分12分)已知函數(shù)a∈R且).

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若函數(shù)yf(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意t∈[1,2],函數(shù)在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍.

 

【答案】

(1) 當(dāng)a>0時(shí),的單調(diào)增區(qū)間為(0,1),單調(diào)減區(qū)間為(1,+∞)

當(dāng)a<0時(shí),的單調(diào)增區(qū)間為(1,+∞),單調(diào)減區(qū)間為(0,1)

(2)

【解析】

試題分析:解:(本小題滿分12分)

(1). ∵x>0, ………………………1分

當(dāng)a>0時(shí),的單調(diào)增區(qū)間為(0,1),單調(diào)減區(qū)間為(1,+∞)……………2分

當(dāng)a<0時(shí),的單調(diào)增區(qū)間為(1,+∞),單調(diào)減區(qū)間為(0,1).……………4分

(2)∵函數(shù)y在點(diǎn)(2,處的切線斜率為1,

, 解得a=-2.………………………………5分

,  ∴

.……………………………7分

,即,  ∵△=,

∴方程有兩個(gè)實(shí)根且兩根一正一負(fù),即有且只有一個(gè)正根.…………8分

∵函數(shù)在區(qū)間(t,3)(其中t∈[1,2])上總不是單調(diào)函數(shù),

∴方程上有且只有一個(gè)實(shí)數(shù)根.………………………9分

又∵,∴

,且.…………………………………………10分

,∴,

,則,即上單調(diào)遞減.

,即

綜上可得,m的取值范圍為.…………………………………12分

考點(diǎn):本試題考查了導(dǎo)數(shù)的運(yùn)用

點(diǎn)評(píng):解決該試題的關(guān)鍵是能理解對(duì)于導(dǎo)數(shù)的符號(hào),運(yùn)用分類討論的思想來求解函數(shù)的單調(diào)性。同時(shí)對(duì)于函數(shù)不單調(diào)的處理,可以轉(zhuǎn)換為函數(shù)單調(diào)時(shí)的參數(shù)的范圍,然后利用補(bǔ)集的思想求解結(jié)論,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案