已知函數(shù)
(1)若函數(shù)上為增函數(shù),求實數(shù)的取值范圍;
(2)當時,求上的最大值和最小值.

(1)(2),

解析試題分析:(1)由已知得,   1分
依題意得對任意恒成立
對任意恒成立,     3分
          4分
  
所以的取值范圍為   5分
(2)當時,,       6分
,得,         7分
時,,若時,,
是函數(shù)在區(qū)間上的唯一的極小值,也是最小值,
,而,      10分
由于,        12分
               14分
考點:本小題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性,極值,最值等,以及恒成立問題的解決.
點評:利用導(dǎo)數(shù)研究函數(shù)的性質(zhì)時,要注意步驟完整,最好列表格進行說明單調(diào)性、極值、最值等,而且要注意函數(shù)的定義域.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)若存在函數(shù)使得恒成立,則稱的一個“下界函數(shù)”.
(I) 如果函數(shù)為實數(shù)的一個“下界函數(shù)”,求的取值范圍;
(Ⅱ)設(shè)函數(shù) 試問函數(shù)是否存在零點,若存在,求出零點個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中
(1)若函數(shù)有極值,求的值;
(2)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
(3)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ) 若存在實數(shù),使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

曲線在點處的切線與x軸交點的橫坐標為an
(1)求an;
(2)設(shè),求數(shù)到的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

文科(本小題滿分14分)設(shè)函數(shù)。(Ⅰ)若函數(shù)處與直線相切,①求實數(shù),b的值;②求函數(shù)上的最大值;(Ⅱ)當時,若不等式對所有的都成立,求實數(shù)m的取值范圍。)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求由曲線,所圍成的封閉圖形的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知在區(qū)間上最大值是5,最小值是-11,求的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其圖像在點處的切線為
(1)求、直線及兩坐標軸圍成的圖形繞軸旋轉(zhuǎn)一周所得幾何體的體積;
(2)求、直線軸圍成圖形的面積.

查看答案和解析>>

同步練習冊答案