一束光線(xiàn)從點(diǎn)F1(-1,0)出發(fā),經(jīng)直線(xiàn)l:2x-y+3=0上一點(diǎn)P反射后,恰好穿過(guò)點(diǎn)F2(1,0).
(1)求P點(diǎn)的坐標(biāo);
(2)求以F1、F2為焦點(diǎn)且過(guò)點(diǎn)P的橢圓C的方程;
(3)設(shè)點(diǎn)Q是橢圓C上除長(zhǎng)軸兩端點(diǎn)外的任意一點(diǎn),試問(wèn)在x軸上是否存在兩定點(diǎn)A、B,使得直線(xiàn)QA、QB的斜率之積為定值?若存在,請(qǐng)求出定值,并求出所有滿(mǎn)足條件的定點(diǎn)A、B的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)設(shè)出F
1關(guān)于l的對(duì)稱(chēng)點(diǎn)為F,進(jìn)而利用F
1的坐標(biāo)求得
的值,同時(shí)把F
1F的中點(diǎn)代入直線(xiàn)方程求得n和m的關(guān)系式,聯(lián)立方程求得n和m,進(jìn)而求得F的坐標(biāo).
(2)根據(jù)橢圓的定義可求得2a=PF
1+PF
2=PF+PF
2進(jìn)而利用兩點(diǎn)間的距離公式求得a,根據(jù)c的值求得b,則橢圓的方程可得.
(3)假設(shè)存在兩定點(diǎn),并設(shè)出坐標(biāo),分別表示出QT和QS的斜率表示出k,把橢圓的方程代入,對(duì)于x∈(-
,
)恒成立聯(lián)立方程求得k,s和t,求得兩定點(diǎn)的坐標(biāo).
解答:解:(1)設(shè)F
1關(guān)于l的對(duì)稱(chēng)點(diǎn)為F(m,n),則
=-且
2•-+3=0,
解得
m=-,
n=,即
F(-,).
由
,解得
P(-,).
(2)因?yàn)镻F
1=PF,根據(jù)橢圓定義,得2a=PF
1+PF
2=PF+PF
2=FF
2=
=2,所以a=
.又c=1,
所以b=1.所以橢圓C的方程為
+y2=1.
(3)假設(shè)存在兩定點(diǎn)為A(s,0),B(t,0),
使得對(duì)于橢圓上任意一點(diǎn)Q(x,y)(除長(zhǎng)軸兩端點(diǎn))都有k
Qt•k
Qs=k(k為定值),
即
•
=k,將
y2=1-代入并整理得
(k+)x2-k(s+t)x+kst-1=0(*)
.由題意,(*)式對(duì)任意x∈(-
,
)恒成立,
所以
,
解之得
或
.
所以有且只有兩定點(diǎn)(
,0),(-
,0),
使得k
Qt•k
Qs為定值-
.
點(diǎn)評(píng):本題主要考查了直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題.考查了學(xué)生綜合分析問(wèn)題和推理能力.