曲線在點(1,f(x))處的切線方程為           
 

試題分析:根據(jù)題意,由于曲線,因此當x=1時,導數(shù)值為1,那么額控制該點的函數(shù)值為y=1-2+1=0,故可知點斜式方程為y=(x-1),故可知結(jié)論為
點評:主要是考查了導數(shù)求解曲線的切線方程的運用,屬于基礎題。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是函數(shù)f(x)的導函數(shù),如果是二次函數(shù),的圖象開口向上,頂點坐標為,那么曲線f(x)上任一點處的切線的傾斜角的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)在[1,2]的最大值和最小值分別是                      (  )
A.,1 B.1,0 C.,D.1,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線在P點處的切線平行于直線,則此切線方程是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的單調(diào)減區(qū)間是(   )
A.(B.C.(,D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的極值點與極值;
(2)設的導函數(shù),若對于任意,且恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),,
(1)若存在極值,求的取值范圍;
(2)若,問是否存在與曲線都相切的直線?若存在,判斷有幾條?并求出公切線方程,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線在點(1,2)處的切線方程是____________­­­­­­­­­

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),則的大小關(guān)系是( 。
A.B.
C.D.

查看答案和解析>>

同步練習冊答案