在△ABC中,角A、B、C的對邊分別為a、b、c,且
sin2A-sinB
sinC
=
a-b
c
,則角A的大小為( 。
A、
π
6
B、
π
4
C、
π
3
D、
3
分析:由條件利用正弦定理可得
sin2A-sinB
sinC
=
sinA-sinB
sinC
,求得cosA的值,可得A的值.
解答:解:在△ABC中,由條件利用正弦定理可得
sin2A-sinB
sinC
=
sinA-sinB
sinC
,
故有sin2A=sinA,
∴cosA=
1
2

∴A=
π
3
,
故選:C.
點(diǎn)評:本題主要考查正弦定理的應(yīng)用,根據(jù)三角函數(shù)的值求角,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大。
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊答案