【題目】環(huán)保部門要對所有的新車模型進(jìn)行廣泛測試,以確定它的行車?yán)锍痰牡燃,下表是?/span>100輛新車模型在一個(gè)耗油單位內(nèi)行車?yán)锍蹋▎挝唬汗铮┑臏y試結(jié)果.

分組

頻數(shù)

6

10

20

30

18

12

4

1)做出上述測試結(jié)果的頻率分布直方圖,并指出其中位數(shù)落在哪一組;

2)用分層抽樣的方法從行車?yán)锍淘趨^(qū)間的新車模型中任取5輛,并從這5輛中隨機(jī)抽取2輛,求其中恰有一個(gè)新車模型行車?yán)锍淘?/span>內(nèi)的概率.

【答案】1)圖見解析;中位數(shù)在區(qū)間 2

【解析】

(1)由頻率分布表可畫出頻率分布直方圖,由圖可求出中位數(shù)所在區(qū)間.

(2)由題意,設(shè)從,中選取的車輛為,,,從,中選取的車輛為,利用列舉法從這5輛車中抽取2輛,其中恰有一個(gè)新車模型行車?yán)锍淘?/span>,內(nèi)的概率.

1)由題意可畫出頻率分布直方圖如圖所示:

由圖可知,中位數(shù)在區(qū)間

2)由題意,設(shè)從中選取的車輛為A,B,C

中選取的車輛為a,b

則從這5輛車中抽取2輛的所有情況有10種,分別為ABAC,AaAb,BC,BaBbCa,Cb,ab,

其中符合條件的有6種,Aa,Ab,Ba,Bb,CaCb,所以所求事件的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的單調(diào)區(qū)間與極值;

2)當(dāng)函數(shù)有兩個(gè)極值點(diǎn)時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用平面截圓柱面,當(dāng)圓柱的軸與所成角為銳角時(shí),圓柱面的截面是一個(gè)橢圓,著名數(shù)學(xué)家創(chuàng)立的雙球?qū)嶒?yàn)證明了上述結(jié)論.如圖所示,將兩個(gè)大小相同的球嵌入圓柱內(nèi),使它們分別位于的上方和下方,并且與圓柱面和均相切.給出下列三個(gè)結(jié)論:

兩個(gè)球與的切點(diǎn)是所得橢圓的兩個(gè)焦點(diǎn);

若球心距,球的半徑為,則所得橢圓的焦距為2;

當(dāng)圓柱的軸與所成的角由小變大時(shí),所得橢圓的離心率也由小變大.

其中,所有正確結(jié)論的序號是(

A.B.C.①②D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

1)若,直線與曲線相交于兩點(diǎn),求;

2)若,求曲線上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)是函數(shù)的反函數(shù),解方程;

2)當(dāng)時(shí),定義,設(shè),數(shù)列的前n項(xiàng)和為,求;

3)對于任意,其中,當(dāng)能作為一個(gè)三角形的三邊長時(shí),也總能作為一個(gè)三角形的三邊長,試探究M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且AB1BC2, ABC=60°PA⊥平面ABCD,AEPCE,

下列四個(gè)結(jié)論:①ABAC;②AB⊥平面PAC;③PC⊥平面ABE;④BEPC.正確的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)為,,焦距為,直線:與橢圓相交于,兩點(diǎn),為弦的中點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線:與橢圓相交于不同的兩點(diǎn),,,若為坐標(biāo)原點(diǎn)),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是雙曲線上的動(dòng)點(diǎn),是雙曲線的焦點(diǎn),M的平分線上一點(diǎn),且,某同學(xué)用以下方法研究:延長于點(diǎn)N,可知為等腰三角形,且M的中點(diǎn),得,類似地:點(diǎn)是橢圓上的動(dòng)點(diǎn),橢圓的焦點(diǎn),M的平分線上一點(diǎn),且的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),離心率為,為坐標(biāo)原點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)為橢圓上的三點(diǎn),交于點(diǎn),且,當(dāng)的中點(diǎn)恰為點(diǎn)時(shí),判斷的面積是否為常數(shù),并說明理由.

查看答案和解析>>

同步練習(xí)冊答案