【題目】下列說法:

①函數(shù)的圖象和直線的公共點個數(shù)是,則的值可能是

②若函數(shù)定義域為且滿足,則它的圖象關(guān)于軸對稱;

③函數(shù)的值域為;

④若函數(shù)上有零點,則實數(shù)的取值范圍是.

其中正確的序號是_________.

【答案】①③④

【解析】

①:畫出函數(shù)圖像即可得出答案.

②:的函數(shù)關(guān)于軸對稱.

③:討論的正負(fù)號,利用函數(shù)的單調(diào)性分別求出函數(shù)的值域.再求并集即可.

④:討論二次函數(shù)的對稱軸的位置,再利用函數(shù)的零點分布性質(zhì)列出不等式,解出即可.

①畫出函數(shù)的圖象,如圖所示:

的值可能是.正確.

②若函數(shù)定義域為且滿足,則它的圖象關(guān)于對稱,錯誤.

③函數(shù),

當(dāng)時,單調(diào)遞增,所以

當(dāng)時,單調(diào)遞增,

所以函數(shù)的值域為.

④當(dāng)時函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

函數(shù)上有零點等價于:

.

所以.

當(dāng)時函數(shù)上單調(diào)遞減。

函數(shù)上有零點等價于:無解.

綜上所述:.正確.

故填:①③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在[4,4]上的奇函數(shù),當(dāng)x(0,4]時,函數(shù)的解析式為 (aR),

(1)試求a的值;

(2)f(x)[-4,4]上的解析式;

(3)f(x)[-40)上的最值(最大值和最小值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有三個鄉(xiāng)鎮(zhèn),分別位于一個矩形的兩個頂點M,N的中點S處,,現(xiàn)要在該矩形的區(qū)域內(nèi)(含邊界),且與M,N等距離的一點O處設(shè)一個宣講站,記O點到三個鄉(xiāng)鎮(zhèn)的距離之和為

1)設(shè),試將L表示為x的函數(shù)并寫出其定義域;

2)試?yán)茫?/span>1)的函數(shù)關(guān)系式確定宣講站O的位置,使宣講站O到三個鄉(xiāng)鎮(zhèn)的距離之和最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,過點的直線與拋物線交于,兩點,線段的垂直平分線交軸于點,若,則點的橫坐標(biāo)為( )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)上的最大值;

(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;

(3)當(dāng) 時,函數(shù) 的圖象與軸交于兩點 ,且 ,又的導(dǎo)函數(shù).若正常數(shù) 滿足條件.證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,令.

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間及極值;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量a=(cosωx-sinωx,sinωx),b=(-cosωx-sinωx,2cosωx).設(shè)函數(shù)f(x)=a·b+λ(x∈R)的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈.

(1)求函數(shù)f(x)的最小正周期;

(2)若y=f(x)的圖象經(jīng)過點,求函數(shù)f(x)在區(qū)間上的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}滿足an+1+an=9·2n-1,n∈N*.

(1)求數(shù)列{an}的通項公式;

(2)設(shè)數(shù)列{an}的前n項和為Sn,若不等式Sn>kan-2對一切n∈N*恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系,將曲線上的每一個點的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的,得到曲線,以坐標(biāo)原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系, 的極坐標(biāo)方程為

(Ⅰ)求曲線的參數(shù)方程;

(Ⅱ)過原點且關(guān)于軸對稱的兩條直線分別交曲線、,且點在第一象限,當(dāng)四邊形的周長最大時,求直線的普通方程.

查看答案和解析>>

同步練習(xí)冊答案