已知關(guān)于x的不等式:<1.
(1)當a=1時,解該不等式;
(2)當a為任意實數(shù)時,解該不等式.
(1){x|1<x<2};(2)詳見解析.
解析試題分析:(1) 當a=1時,已知不等式化為<1,進而可化為<0(特點:一邊為一個分式,另一邊為零)可寫出不等式的解集; (2)由分式不等式的解法,先將已知不等式化為一邊為一個分式,另一邊為零的形式: <0按a=0,a>0和a<0分類討論,對于a>0,由于方程(ax-2)(x-1)=0的兩根為x1=,x2=1,所以又要按兩根的大小分三類:大于、等于和小于進行討論;對于a<0特別應(yīng)注意寫不等式的解集前先應(yīng)將字母x的系數(shù)化為正.
試題解析:(1)當a=1時,不等式化為<1,化為<0, .2分
∴1<x<2,解集為{x|1<x<2} .5分
(2)a>0時,由<1得<0, 6分
(ax-2)(x-1)<0,方程(ax-2)(x-1)=0的兩根x1=,x2=1 8分
當=1即a=2時,解集為; .9分
當>1即0<a<2時,解集為; 11分
當<1即a>2時,解集為 13分
當a=0時,解集為
當a<0時,解集為
考點:分式不等式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知不等式ax2+bx+c>0的解集為(1,t),記函數(shù)f(x)=ax2+(a-b)x-c.
(1)求證:函數(shù)y=f(x)必有兩個不同的零點;
(2)若函數(shù)y=f(x)的兩個零點分別為m,n,求|m-n|的取值范圍;
(3)是否存在這樣的實數(shù)a,b,c及t使得函數(shù)y=f(x)在[-2,1]上的值域為[-6,12]?若存在,求出t的值及函數(shù)y=f(x)的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知關(guān)于x的不等式|ax-1|+|ax-a|≥2(a>0).
(1)當a=1時,求此不等式的解集;
(2)若此不等式的解集為R,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com