直角坐標(biāo)系xOy平面上,在平行直線x=n(n=0,1,2,…,5)與平行直線y=n(n=0,1,2,…,5)組成的圖形中,矩形共有

[  ]
A.

25個(gè)

B.

36個(gè)

C.

100個(gè)

D.

225個(gè)

答案:D
解析:

在垂直于x軸的6條直線中任取2條,在垂直于y軸的6條直線中任取2條,4條直線相交得出一個(gè)矩形,所以矩形總數(shù)為=15×15=225個(gè).故選D.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知以O(shè)為圓心的圓與直線l:y=mx+(3-4m),(m∈R)恒有公共點(diǎn),且要求使圓O的面積最小.
(1)寫(xiě)出圓O的方程;
(2)圓O與x軸相交于A、B兩點(diǎn),圓內(nèi)動(dòng)點(diǎn)P使|
PA
|
、|
PO
|
、|
PB
|
成等比數(shù)列,求
PA
PB
的范圍;
(3)已知定點(diǎn)Q(-4,3),直線l與圓O交于M、N兩點(diǎn),試判斷
QM
QN
×tan∠MQN
是否有最大值,若存在求出最大值,并求出此時(shí)直線l的方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,橢圓的參數(shù)方程為
x=
3
cosθ
y=sinθ
為參數(shù)).以o為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為2ρcos(θ+
π
3
)=3
6
.求橢圓上點(diǎn)到直線距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
x=cosφ
y=sinφ
(φ為參數(shù)),曲線C2的參數(shù)方程為
x=acosφ
y=bsinφ
(a>b>0,φ為參數(shù))在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=α與C1,C2各有一個(gè)交點(diǎn).當(dāng)α=0時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng)α=
π
2
時(shí),這兩個(gè)交點(diǎn)重合.
(I)分別說(shuō)明C1,C2是什么曲線,并求出a與b的值;
(II)設(shè)當(dāng)α=
π
4
時(shí),l與C1,C2的交點(diǎn)分別為A1,B1,當(dāng)α=-
π
4
時(shí),l與C1,C2的交點(diǎn)為A2,B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy平面內(nèi),平行直線x=m(m=1,2,3,4),與平行直線y=n(n=1,2,3,4)組成的所有矩形中任取一個(gè)矩形,恰好是正方形的概率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

在直角坐標(biāo)系xOy平面內(nèi),平行直線x=m(m=1,2,3,4),與平行直線y=n(n=1,2,3,4)組成的所有矩形中任取一個(gè)矩形,恰好是正方形的概率是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

同步練習(xí)冊(cè)答案