用單調(diào)性的定義證明:函數(shù)f(x)=
x+2x+1
在(-1,+∞)上是減函數(shù).
分析:任取區(qū)間(-1,+∞)上兩個(gè)實(shí)數(shù)a,b,且a<b,我們做差f(a)-f(b),并判斷其符號(hào),進(jìn)而根據(jù)減函數(shù)的定義,即可得到答案.
解答:證明:任取區(qū)間(-1,+∞)上兩個(gè)實(shí)數(shù)a,b,且a<b,
則a+1>0,b+1>0,b-a>0
則f(a)-f(b)=
a+2
a+1
-
b+2
b+1
=
b-a
(a+1)•(b+1)
>0
即f(a)>f(b)
故函數(shù)f(x)=
x+2
x+1
在(-1,+∞)上是減函數(shù)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的判斷與證明,其中熟練掌握函數(shù)單調(diào)性的證明方法定義法(作差法)的方法和步驟是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+b
1+x2
是定義在(-1,1)上的奇函數(shù),且f(
1
2
)=
2
5

(1)求函數(shù)f(x)的解析式;
(2)用單調(diào)性的定義證明f(x)在(-1,1)上是增函數(shù);
(3)解不等式f(t2-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的一元二次方程2x2-ax-2=0的兩根為α,β(其中α<β),函數(shù)f(x)=
4x-ax2+1

(1)若a=1,求f(α)+f(β)的值;
(2)用單調(diào)性的定義證明f(x)在(α,β)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
2x(x≤-1)
-2(-1<x<1)
-2x(x≥1)

(1)畫出函數(shù)的圖象;
(2)若f(t)=-3,求t的值;
(3)用單調(diào)性的定義證明函數(shù)f(x)在區(qū)間(1,+∞)上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-xx+1

(1)用單調(diào)性的定義證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(2)若關(guān)于x的方程f(x)-3x-m=0在x∈[1,+∞)上有解,求實(shí)數(shù)m的最大值;
(3)是否存在負(fù)數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案