【題目】在數(shù)列中, .

1)求出,,;

2)歸納猜想出數(shù)列的通項(xiàng)公式;

3)證明通項(xiàng)公式.

【答案】1, 23)見解析

【解析】試題分析:(1依次代入n=1,2,3, , 2根據(jù)分子規(guī)律得 1,由分母規(guī)律得 ,即得數(shù)列的通項(xiàng)公式;(3)利用數(shù)學(xué)歸納法進(jìn)行證明,由證明 n=k+1時(shí)成立.

試題解析: 1, , 23)數(shù)學(xué)歸納法證明如下:

1n=1時(shí)成立;(2)假設(shè)n=k成立,則,所以n=k+1時(shí), ,由(1)(2)得結(jié)論成立

點(diǎn)睛: 用數(shù)學(xué)歸納法證明等式的策略(1)用數(shù)學(xué)歸納法證明等式問題是常見題型,其關(guān)鍵點(diǎn)在于弄清等式兩邊的構(gòu)成規(guī)律,等式兩邊各有多少項(xiàng),以及初始值n0的值.(2)由n=k到n=k+1時(shí),除考慮等式兩邊變化的項(xiàng)外還要充分利用n=k時(shí)的式子,即充分利用假設(shè),正確寫出歸納證明的步驟,從而使問題得以證明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求曲線在點(diǎn)(1,f(1))處的切線方程;

2)求經(jīng)過點(diǎn)A1,3)的曲線的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形, , , 平面, .

1)求證: 平面;

2)求證: 平面

3)若的中點(diǎn),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的性質(zhì)通常指函數(shù)的定義域、值域、周期性、單調(diào)性、奇偶性、對稱性等,請選擇適當(dāng)?shù)奶骄宽樞颍芯亢瘮?shù)的性質(zhì),并在此基礎(chǔ)上填寫下表,作出fx)在區(qū)間[-π,2π]上的圖象.

性質(zhì)

理由

結(jié)論

得分

定義域

值域

奇偶性

周期性

單調(diào)性

對稱性

作圖

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)與函數(shù)的圖象在點(diǎn)(0,0)處有相同的切線.

Ⅰ)求a的值;

Ⅱ)設(shè),求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在長為10千米的河流的一側(cè)有一條觀光帶,觀光帶的前一部分為曲線段,設(shè)曲線段為函數(shù)(單位:千米)的圖象,且圖象的最高點(diǎn)為;觀光帶的后一部分為線段

(1)求函數(shù)為曲線段的函數(shù)的解析式;

(2)若計(jì)劃在河流和觀光帶之間新建一個(gè)如圖所示的矩形綠化帶,綠化帶僅由線段構(gòu)成,其中點(diǎn)在線段上.當(dāng)長為多少時(shí),綠化帶的總長度最長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2(lnx+lna)(a>0).
(1)當(dāng)a=1時(shí),設(shè)函數(shù)g(x)= ,求函數(shù)g(x)的單調(diào)區(qū)間與極值;
(2)設(shè)f′(x)是f(x)的導(dǎo)函數(shù),若 ≤1對任意的x>0恒成立,求實(shí)數(shù)a的取值范圍;
(3)若x1 , x2∈( ,1),x1+x2<1,求證:x1x2<(x1+x24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)某種設(shè)備使用的年限x(年)與所支出的維修費(fèi)用y(萬元)有以下統(tǒng)計(jì)資料:

使用年限x

2

3

4

5

6

維修費(fèi)用y

2

4

5

6

7

若由資料知y對x呈線性相關(guān)關(guān)系。試求:

(1)求; (2)線性回歸方程;

(3)估計(jì)使用10年時(shí),維修費(fèi)用是多少?

附:利用“最小二乘法”計(jì)算a,b的值時(shí),可根據(jù)以下公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

(3)將函數(shù)的圖象向右平移個(gè)單位后所得函數(shù)的圖象關(guān)于原點(diǎn)中心對稱,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案