已知函數(shù),函數(shù)

①當時,求函數(shù)的表達式;

②若,函數(shù)上的最小值是2 ,求的值;

③在②的條件下,求直線與函數(shù)的圖象所圍成圖形的面積.

 

【答案】

.⑵.⑶=.

【解析】

試題分析:⑴∵,

∴當時,; 當時,

∴當時,; 當時,.

∴當時,函數(shù).

⑵∵由⑴知當時,,

∴當時, 當且僅當時取等號.

∴函數(shù)上的最小值是,∴依題意得.

⑶由解得

∴直線與函數(shù)的圖象所圍成圖形的面積

=.

考點:本題主要考查導(dǎo)數(shù)計算,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,定積分計算。

點評:典型題,在給定區(qū)間,導(dǎo)數(shù)值非負,函數(shù)是增函數(shù),導(dǎo)數(shù)值為非正,函數(shù)為減函數(shù)。求最值的步驟:計算導(dǎo)數(shù)、求駐點、討論駐點附近導(dǎo)數(shù)的正負、確定極值、計算的導(dǎo)函數(shù)值比較大小。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+(k-2)x+2k-1
(1)若f(1)=16,函數(shù)g(x)是R上的奇函數(shù),當x>0時,g(x)=f(x),
(i)求實數(shù)k與g(0)的值;
(ii)當x<0時,求g(x)的解析式;
(2)若方程f(x)=0的兩根中,一根屬于區(qū)間(0,1),另一根屬于區(qū)間(1,2),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex+2x2-3x.
(Ⅰ)求證函數(shù)f(x)在區(qū)間[0,1]上存在唯一的極值點,并用二分法求函數(shù)取得極值時相應(yīng)x的近似值(誤差不超過0.2);(參考數(shù)據(jù)e≈2.7,
e
≈1.6
,e0.3≈1.3)
(Ⅱ)當x≥
1
2
時,若關(guān)于x的不等式f(x)≥
5
2
x2+(a-3)x+1
恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義:設(shè)函數(shù)y=f(x)在(a,b)內(nèi)可導(dǎo),f'(x)為f(x)的導(dǎo)數(shù),f''(x)為f'(x)的導(dǎo)數(shù)即f(x)的二階導(dǎo)數(shù),若函數(shù)y=f(x) 在(a,b)內(nèi)的二階導(dǎo)數(shù)恒大于等于0,則稱函數(shù)y=f(x)是(a,b)內(nèi)的下凸函數(shù)(有時亦稱為凹函數(shù)).已知函數(shù)f(x)=xlnx
(1)證明函數(shù)f(x)=xlnx是定義域內(nèi)的下凸函數(shù),并在所給直角坐標系中畫出函數(shù)f(x)=xlnx的圖象;
(2)對?x1,x2∈R+,根據(jù)所畫下凸函數(shù)f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關(guān)系;
(3)當n為正整數(shù)時,定義函數(shù)N (n)表示n的最大奇因數(shù).如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)的定義域為[-1,5],部分對應(yīng)值如下表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.給出關(guān)于f(x)的下列命題:
x -1 0 4 5
f(x) 1 2 2 1
①函數(shù)y=f(x)在x=2時,取極小值;
②函數(shù)f(x)在[0,1]是減函數(shù),在[1,2]是增函數(shù);
③當1<a<2時,函數(shù)y=f(x)-a有4個零點.
④如果當x∈[-1,t]時,f(x)的最大值是2,那么t的最大值為5.
其中所有正確命題序號為
 
..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln x-
b
x
(b為實數(shù))
(1)若b=-1,求函數(shù)f(x)的極值;
(2)若函數(shù)M(x)滿足M(x)≥N(x)恒成立,則稱M(x)是N(x)的一個“上界函數(shù)”.
①如果函數(shù)f(x)為g(x)=-Inx的一個“上界函數(shù)”,求b的取值范圍;
②若b=0,函數(shù)F(x)的圖象與函數(shù)f(x)的圖象關(guān)于直線y=x對稱,求證:當x∈(-2,+∞)時,函數(shù)F(x)是函數(shù)y=f(
x
2
+1)+
x
2
+1
的一個“上界函數(shù)”.

查看答案和解析>>

同步練習冊答案