( (本小題滿分12分)
在棱長為4的正方體ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,點P在棱CC1上,且CC1=4CP.
(1)、求直線AP與平面BCC1B1所成的角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)、求點P到平面ABD1的距離.
(1)
(2)
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
在直四棱柱ABCD—A
1B
1C
1D
1中,已知底面四邊形
ABCD是邊長為3的菱形,且DB=3,A
1A=2,點E
在線段BC上,點F在線段D
1C
1上,且BE=D
1F=1.
(1)求證:直線EF∥平面B
1D
1DB;
(2)求二面角F—DB—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(8分)
如圖,在四面體
中,
,點
分別是
的中點.求證:
(1)直線
面
;
(2)平面
面
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
.在棱長為2的正方體
中,動點
在
內(nèi),且到直線
的距離之和等于
,則
的面積最大值是 ( )
A. | B.1 | C.2 | D.4 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖, 在直三棱柱ABC-A
1B
1C
1中,AC=3,BC=4,
,AA
1=3,點D是AB的中點.
(Ⅰ)求證:
(Ⅱ)求二面角
的大。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖所示,在三棱錐C—ABD中,E、F分別是AC和BD的中點,若CD=2AB=4,EF⊥AB,則EF與CD所成的角是 .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(文)(本小題8分)
如圖,在四棱錐
中,
平面
,
,
,
,
(1)求證:
;
(2)求點
到平面
的距離
證明:(1)
平面
,
又
平面
(4分)
(2)設點
到平面
的距離為
,
,
,
求得
即點
到平面
的距離為
(8分)
(其它方法可參照上述評分標準給分)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
已知
,
,
,求
點的坐標,使四邊形
為直角梯形.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
兩個平面將空間最多分成______ ____個部分.
查看答案和解析>>