設動點P(x,y)在區(qū)域Ω:
x≥0
y≥x
x+y≤4
上,過點P作直線l,設直線l與區(qū)域Ω的公共部分為線段AB,則以AB為直徑的圓的面積的最大值為______.
作出不等式組
x≥0
y≥x
x+y≤4
表示的平面區(qū)域,
精英家教網(wǎng)

得到如圖的△MNO及其內(nèi)部,
其中M(0,4),N(2,2),0為坐標原點
∵直線l與區(qū)域Ω的公共部分為線段AB,
∴當直線l與y軸重合時,|AB|=|MN|=4達到最大值
此時以AB為直徑的圓的面積為S=π?(
|AB|
2
)2
=4π,也達到最大值
故答案為:4π
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•陜西三模)設動點P(x,y)(x≥0)到定點F(
1
2
,0)
的距離比到y(tǒng)軸的距離大
1
2
.記點P的軌跡為曲線C.
(Ⅰ)求點P的軌跡方程;
(Ⅱ)設圓M過A(1,0),且圓心M在P的軌跡上,BD是圓M 在y軸的截得的弦,當M 運動時弦長BD是否為定值?說明理由;
(Ⅲ)過F(
1
2
,0)
作互相垂直的兩直線交曲線C于G、H、R、S,求四邊形面GRHS的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設動點P(x,y)(y≥0)到定點F(0,1)的距離比它到x軸的距離大1,記點P的軌跡為曲線C.
(1)求點P的軌跡方程;
(2)若圓心在曲線C上的動圓M過點A(0,2),試證明圓M與x軸必相交,且截x軸所得的弦長為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設動點P(x,y)在區(qū)域Ω:
x≥0
y≥x
x+y≤4
上,過點P作直線l,設直線l與區(qū)域Ω的公共部分為線段AB,則以AB為直徑的圓的面積的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源:2013年高考數(shù)學復習卷D(五)(解析版) 題型:填空題

設動點P(x,y)在區(qū)域上,過點P作直線l,設直線l與區(qū)域Ω的公共部分為線段AB,則以AB為直徑的圓的面積的最大值為   

查看答案和解析>>

同步練習冊答案