已知函數(shù)y=f(x)和y=g(x)的定義域均為{x|-2≤x≤2},其圖象如圖所示:

給出下列四個命題:
①函數(shù)y=f[g(x)]有且僅有6個零點;  
②函數(shù)y=g[f(x)]有且僅有3個零點;
③函數(shù)y=f[f(x)]有且僅有5個零點;  
④函數(shù)y=g[f(x)]有且僅有4個零點,其中正確的命題是( 。
分析:通過f(x)=0可知函數(shù)有三個解,g(x)=0有2個解,具體分析 ①②③④推出正確結論.
解答:解:由圖象可得-2≤g(x)≤2,-2≤f(x)≤2,
①由于滿足方程f[g(x)]=0 的g(x)有三個不同值,由于每個值g(x)對應了2個x值,
故滿足f[g(x)]=0的x值有6個,即方程f[g(x)]=0有且僅有6個根,故①正確.
②由于滿足方程g[f(x)]=0的f(x)有2個不同的值,從圖中可知,每一個值f(x),
可能對應有1,2,或3個x值,故滿足方程g[f(x)]=0的x值可能有2,4,或6個,故②不正確.
③由于滿足方程f[f(x)]=0的f(x)有3個不同的值,從圖中可知,一個f(x)等于0,
一個f(x)∈(-2,-1),一個f(x)∈(1,2).
而當f(x)=0對應了3個不同的x值;當f(x)∈(-2,-1)時,只對應一個x值;
當f(x)∈(1,2)時,也只對應一個x值.
故滿足方程f[f(x)]=0的x值共有5個,故③正確.
④由于滿足方程g[g(x)]=0 的g(x)值有2個,而結合圖象可得,每個g(x)值對應2個不同的x值,
故滿足方程g[g(x)]=0 的x值有4個,即方程g[g(x)]=0有且僅有4個根,故④正確.
故選 D.
點評:本題考查根的存在性及根的個數(shù)判斷,函數(shù)的圖象,考查邏輯思維能力及識別圖象的能力,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16、已知函數(shù)y=f(x)是R上的奇函數(shù)且在[0,+∞)上是增函數(shù),若f(a+2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2、已知函數(shù)y=f(x+1)的圖象過點(3,2),則函數(shù)f(x)的圖象關于x軸的對稱圖形一定過點(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)是偶函數(shù),當x<0時,f(x)=x(1-x),那么當x>0時,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當x>0 時,f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的圖象如圖,則滿足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
(1,3]
(1,3]

查看答案和解析>>

同步練習冊答案