若f(x)=,則f(2 012)=(  ),                 

 (A)1    (B)2  (C)  (D)

C.

∴f(x)=

又∵x>0時,f(x)=f(x-4),∴4為f(x)(x>0)的一個周期,

∴f(2 012)=f(0)=20+.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學 題型:022

對任意的函數(shù)f(x),g(x),在公共定義域內(nèi),規(guī)定f(x)*g(x)=min{f(x),g(x)},若f(x)=3-x,g(x)=,則f(x)*g(x)的最大值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:學習周報 數(shù)學 人教課標高一版(A必修1) 2009-2010學年 第4期 總160期 人教課標高一版 題型:022

若f(x)=,則f(2)+f+f(3)+f+…+f(2010)+f=________.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年普通高等學校招生全國統(tǒng)一考試文科數(shù)學試題江西卷 題型:013

若f(x)=,則f(x)的定義域為

[  ]
A.

(-,0)

B.

(-,+∞)

C.

(-,0)∪(0,+∞)

D.

(-,2)

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆黑龍江虎林高中高二下學期期中理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導數(shù)的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

同步練習冊答案