如圖,在直三棱柱ABC-A1B1C1中,AC=BC,點D是AB的中點.
(1)求證:BC1平面CA1D;
(2)求證:平面CA1D⊥平面AA1B1B.
如圖,(1)連接AC1,交A1C于點O,連接DO
在△ABC1中,點D是AB的中點,點O是A1C的中點
∴BC1DO,BC1?平面CA1D,DO⊆平面CA1D
∴BC1平面CA1D
(2)∵AC=BC,D是AB的中點
∴CD⊥AB
∵直三棱柱ABC-A1B1C1中,平面AA1B1B⊥平面ABC,平面AA1B1B∩平面ABC=AB
∴CD⊥平面AA1B1B,又CD?平面CA1D
∴平面CA1D⊥平面AA1B1B
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,每個側面均為正方形,D為底邊AB的中點,E為側棱CC1的中點,AB1與A1B的交點為O.
(1)求證:CD平面A1EB;
(2)求證:AB1⊥平面A1EB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別為棱BC,CC1,C1D1,AA1的中點,O為AC與BD的交點.
(1)求證:平面BDF平面B1D1H;
(2)求證:平面BDF⊥平面A1AO;
(3)求證:EG⊥AC.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,三棱柱ABC-A1B1C1的底面是正三角形,側棱垂直于底面,D是AC的中點.
(1)求證:B1C平面A1BD;
(2)求證:平面BDA1⊥平面ACC1A1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,平面ABCD⊥平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,且AF=
1
2
AD
=a,G是EF的中點,則GB與平面AGC所成角的正弦值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正三棱柱ABC-A1B1C1中,AB=
2
AA1
,D是A1B1的中點,點E在A1C1上,且DE⊥AE.
(1)證明:平面ADE⊥平面ACC1A1
(2)求直線AD和平面ABC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,且底面各邊都相等,M是PC上的一動點,當點M滿足______時,平面MBD⊥平面PCD.(只要填寫一個你認為是正確的條件即可)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

空間中過點A(-2,1,3),且與xOy坐標平面垂直的直線上的點的坐標滿足( 。
A.x=-2B.y=1C.x=-2或y=1D.x=-2且y=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系內(nèi),到點A(1,2),B(1,5),C(3,6),D(7,-1)的距離之和最小的點的坐標是________.

查看答案和解析>>

同步練習冊答案