【題目】已知拋物線C:y=2x2和直線l:y=kx+1,O為坐標(biāo)原點(diǎn).
(1)求證:l與C必有兩交點(diǎn);
(2)設(shè)l與C交于A(x1 , y1)、B(x2 , y2)兩點(diǎn),且直線OA和OB的斜率之和為1,求k的值.

【答案】
(1)證明:拋物線C:y=2x2和直線l:y=kx+1,O為坐標(biāo)原點(diǎn),

聯(lián)立 ,得2x2﹣kx﹣1=0,

△=(﹣k)2+8=k2+8>0,

∴l(xiāng)與C必有兩交點(diǎn).


(2)解:聯(lián)立 ,得2x2﹣kx﹣1=0,

△=(﹣k)2+8=k2+8>0,

設(shè)l與C交于A(x1,y1)、B(x2,y2)兩點(diǎn),

,x1x2=﹣ ,

∵直線OA和OB的斜率之和為1,

∴kOA+kOB= =

=

=

= =1,

解得k=1


【解析】(1)聯(lián)立 ,得2x2﹣kx﹣1=0,利用根的判別式能證明l與C必有兩交點(diǎn).(2)聯(lián)立 ,得2x2﹣kx﹣1=0,設(shè)l與C交于A(x1,y1)、B(x2,y2)兩點(diǎn),利用韋達(dá)定理、直線的斜率,結(jié)合已知條件能求出k的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出30個(gè)數(shù):1,2,4,7,…,其規(guī)律是:1個(gè)數(shù)是1,2個(gè)數(shù)比第1個(gè)數(shù)大1,3個(gè)數(shù)比第2個(gè)數(shù)大2,4個(gè)數(shù)比第3個(gè)數(shù)大3,依此類(lèi)推.要計(jì)算這30個(gè)數(shù)的和,現(xiàn)已給出了該問(wèn)題算法的程序框圖(如圖所示),請(qǐng)?jiān)趫D中判斷框內(nèi)處和執(zhí)行框中的處填上合適的語(yǔ)句,使之能完成該題算法功能.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),橢圓 的右頂點(diǎn)為A,上頂點(diǎn)為B,過(guò)點(diǎn)O且斜率為 的直線與直線AB相交M,且
(Ⅰ)求證:a=2b;
(Ⅱ)PQ是圓C:(x﹣2)2+(y﹣1)2=5的一條直徑,若橢圓E經(jīng)過(guò)P,Q兩點(diǎn),求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、bc,且a>c,已知=2,cosB,b=3,求:

(1)ac的值;

(2)cos(BC)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cos(2x),x∈R.

(1)求函數(shù)f(x)單調(diào)遞減區(qū)間;

(2)求函數(shù)f(x)在區(qū)間[-, ]上的最小值和最大值,并求出取得最值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩地相距海里,某貨輪勻速行駛從甲地運(yùn)輸貨物到乙地,運(yùn)輸成本包括燃料費(fèi)用和其他費(fèi)用.已知該貨輪每小時(shí)的燃料費(fèi)與其速度的平方成正比,比例系數(shù)為,其他費(fèi)用為每小時(shí)元,且該貨輪的最大航行速度為海里/小時(shí).

)請(qǐng)將該貨輪從甲地到乙地的運(yùn)輸成本表示為航行速度(海里/小時(shí))的函數(shù).

)要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對(duì)方再連續(xù)發(fā)球2次,依次輪換.每次發(fā)球,勝方得1分,負(fù)方得0分.設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立.甲、乙的一局比賽中,甲先發(fā)球. (Ⅰ)求開(kāi)始第4次發(fā)球時(shí),甲、乙的比分為1比2的概率;
(Ⅱ)ξ表示開(kāi)始第4次發(fā)球時(shí)乙的得分,求ξ的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5),若對(duì)于任意x∈[2,4],不等式f(x)+t≤2恒成立,則t的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面邊長(zhǎng)都相等,A1在底面ABC上的射影D為BC的中點(diǎn),則異面直線AB與CC1所成的角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案