已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)為。
(1)求拋物線C的方程;
(2)已知直線y=k(x+)與拋物線C交于A,B兩點(diǎn),且|FA|=2|FB|,求k的值;
(3)設(shè)點(diǎn)P是拋物線C上的動(dòng)點(diǎn),點(diǎn)R,N在y軸上,圓(x-1)2+y2=1內(nèi)切于△PRN,求△PRN的面積最小值。
解:(1)設(shè)拋物線C的方程為y2=2px(p>0)
,即p=1
所以拋物線C的方程為y2=2x。
(2)設(shè)A(x1,y1),B(x2,y2),由|FA|=2|FB|,


又由

 
解①②③構(gòu)成的方程組得x1=1,
又由Δ=(k2-2)2-k4=4-4k2>0,即-1<k<1,所求得的k適合,
因此所求得的k的值為。
(3)設(shè)P(x0,y0),R(0,b),N(0,c),且b>c,
∴直線PR的方程為(y0-b)x-x0y+x0b=0
∵圓(x-1)2+y2=1內(nèi)切于△PRN,
則圓心(1,0)到直線PR的距離為1,
,化簡(jiǎn),得
(x0-2)b2+2y0b-x0=0
同理可得(x0-2)c2+2y0c-x0=0
由于x0>2,所以b,c為方程(x0-2)x2+2y0x-x0=0的兩根,




當(dāng)且僅當(dāng)x0=4時(shí)取等號(hào),
所以△PRN的面積最小值為8。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)為F(0,1).
(Ⅰ)求拋物線C的方程;
(Ⅱ)在拋物線C上是否存在點(diǎn)P,使得過(guò)點(diǎn)P的直線交C于另一點(diǎn)Q,滿足PF⊥QF,且PQ與C在點(diǎn)P處的切線垂直?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•溫州一模)已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)為F(0,1),且過(guò)點(diǎn)A(2,t),
(I)求t的值;
(II)若點(diǎn)P、Q是拋物線C上兩動(dòng)點(diǎn),且直線AP與AQ的斜率互為相反數(shù),試問(wèn)直線PQ的斜率是否為定值,若是,求出這個(gè)值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)為F(
1
2
,0)
.(1)求拋物線C的方程; (2)已知直線y=k(x+
1
2
)
與拋物線C交于A、B 兩點(diǎn),且|FA|=2|FB|,求k 的值; (3)設(shè)點(diǎn)P 是拋物線C上的動(dòng)點(diǎn),點(diǎn)R、N 在y 軸上,圓(x-1)2+y2=1 內(nèi)切于△PRN,求△PRN 的面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F(1,0).
(Ⅰ)求拋物線C的方程;
(Ⅱ)命題:“過(guò)拋物線C的焦點(diǎn)F作與x軸不垂直的任意直線l交拋物線于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M,則
|AB||FM|
為定值,且定值是2”.判斷它是真命題還是假命題,并說(shuō)明理;
(Ⅲ)試推廣(Ⅱ)中的命題,寫(xiě)出關(guān)于拋物線的一般性命題(注,不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),以坐標(biāo)軸為對(duì)稱(chēng)軸,且焦點(diǎn)F(2,0).
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)直線l過(guò)焦點(diǎn)F與拋物線C相交與M,N兩點(diǎn),且|MN|=16,求直線l的傾斜角.

查看答案和解析>>

同步練習(xí)冊(cè)答案