如圖,△ABC中,
AN
=
1
3
NC
,若
BP
=n
BN
,
AP
=m
AB
+
2
11
AC
,求實數(shù)m、n的值.
分析:根據(jù)題意,
AN
=
1
4
AC
,結(jié)合向量的減法法則化簡整理,得
AP
=(1-n)
AB
+
1
4
n
AC
,由已知條件建立關(guān)于m、n的方程組,解之可得m、n之值.
解答:解:由
AN
=
1
3
NC
,得
AN
=
1
4
AC
,
AP
=
AB
+
BP
=
AB
+n
BN

=
AB
+n(
AN
-
AB
)=(1-n)
AB
+
1
4
n
AC
…(4分)
又∵
AP
=m
AB
+
2
11
AC
,
∴m=1-n,
1
4
n=
2
11
…(6分)
解之得m=
3
11
n=
8
11
.…(8分)
點評:本題給出三角形邊的四等分點,求向量
AP
的線性表示式.著重考查向量的基本定理、向量的加裝數(shù)乘運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,∠A=90°,AB=4,AC=3,平面ABC外一點P在平面ABC內(nèi)的射影是AB中點M,二面角P-AC-B的大小為45°.
(I)求二面角P-BC-A的正切值;
(II)求二面角C-PB-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,AB⊥AC,
BD
=
5
3
BC
|
AC
|
=2,則
AC
AD
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波模擬)如圖,△ABC中,∠B=90°,AB=
2
,BC=1,D、 E
兩點分別在線段AB、AC上,滿足
AD
AB
=
AE
AC
=λ,λ∈(0,1)
.現(xiàn)將△ABC沿DE折成直二面角A-DE-B.
(1)求證:當(dāng)λ=
1
2
時,面ADC⊥面ABE;
(2)當(dāng)λ∈(0,1)時,直線AD與平面ABE所成角能否等于
π
6
?若能,求出λ的值;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆黑龍江大慶實驗中學(xué)高二上學(xué)期開學(xué)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)如圖,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一點P在平面ABC內(nèi)的射影是AB中點M,二面角P—AC—B的大小為45°.

(I)求二面角P—BC—A的正切值;

(II)求二面角C—PB—A的正切值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省大慶實驗中學(xué)高二(上)期初數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,△ABC中,∠A=90°,AB=4,AC=3,平面ABC外一點P在平面ABC內(nèi)的射影是AB中點M,二面角P-AC-B的大小為45°.
(I)求二面角P-BC-A的正切值;
(II)求二面角C-PB-A的正切值.

查看答案和解析>>

同步練習(xí)冊答案