設(shè)函數(shù)f(x)=(x>0),觀察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,故fn(x)=     .
根據(jù)題意知,分子都是x,分母中的常數(shù)項依次是2,4,8,16,…可知fn(x)的分母中常數(shù)項為2n,分母中x的系數(shù)為2n-1,故fn(x)=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示的三角形數(shù)陣叫“萊布尼茲調(diào)和三角形”,它們是由整數(shù)的倒數(shù)組成的,第n行有n個數(shù)且兩端的數(shù)均為(n≥2),每個數(shù)是它下一行左右相鄰兩數(shù)的和,如=+,=+,=+,則第10行第4個數(shù)(從左往右數(shù))為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

觀察下列事實:|x|+|y|=1的不同整數(shù)解(x,y)的個數(shù)為4,|x|+|y|=2的不同整數(shù)解(x,y)的個數(shù)為8,|x|+|y|=3的不同整數(shù)解(x,y)的個數(shù)為12,…,則|x|+|y|=20的不同整數(shù)解(x,y)的個數(shù)為(  )
A.76B.80
C.86D.92

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

根據(jù)下面一組等式:
S1=1;
S2=2+3=5;
S3=4+5+6=15;
S4=7+8+9+10=34;
S5=11+12+13+14+15=65;
S6=16+17+18+19+20+21=111;
S7=22+23+24+25+26+27+28=175;
……
可得S1+S3+S5+…+S2n-1=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

所有真約數(shù)(除本身之外的正約數(shù))的和等于它本身的正整數(shù)叫做完全數(shù).
如:;
;

已經(jīng)證明:若是質(zhì)數(shù),則是完全數(shù),.請寫出一個四位完全數(shù)       ;又,所以的所有正約數(shù)之和可表示為;
,所以的所有正約數(shù)之和可表示為
按此規(guī)律,的所有正約數(shù)之和可表示為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

把正奇數(shù)數(shù)列按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號一個數(shù),第五個括號兩個數(shù),第六個括號三個數(shù), .依次劃分為,,,,, .則第個括號內(nèi)各數(shù)之和為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知a1,an+1,則a2,a3,a4,a5的值分別為________________,由此猜想an=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)Sk=+++…+,則Sk+1=(  )
A.Sk+
B.Sk++
C.Sk+-
D.Sk+-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x+1)=,f(1)=1(x∈N*),猜想f(x)的表達(dá)式為(  )
A.f(x)=B.f(x)=
C.f(x)=D.f(x)=

查看答案和解析>>

同步練習(xí)冊答案