已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,其中左焦點(diǎn)F(-2,0).
(1)求橢圓C的方程;
(2)若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段的中點(diǎn)M在圓x2+y2=1上,求m的值.
分析:(1)由題意,得
c
a
=
2
2
c=2
a2=b2+c2.
由此能夠得到橢圓C的方程.
(2)設(shè)點(diǎn)A、B的坐標(biāo)分別為(x1,y1),(x2,y2),線段AB的中點(diǎn)為M(x0,y0),由
x2
8
+
y2
4
=1
y=x+m.
消y得,3x2+4mx+2m2-8=0,再由根的判斷式結(jié)合題設(shè)條件能夠得到m的值.
解答:解:(1)由題意,得
c
a
=
2
2
c=2
a2=b2+c2.

解得
a=2
2
b=2.
∴橢圓C的方程為
x2
8
+
y2
4
=1

(2)設(shè)點(diǎn)A、B的坐標(biāo)分別為(x1,y1),(x2,y2),線段AB的中點(diǎn)為M(x0,y0),
x2
8
+
y2
4
=1
y=x+m.
消y得,3x2+4mx+2m2-8=0,
△=96-8m2>0,∴-2
3
<m<2
3

x0=
x1+x2
2
=-
2m
3
,
y0=x0+m=
m
3

∵點(diǎn)M(x0,y0)在圓x2+y2=1上,∴(-
2m
3
)2+(
m
3
)2=1
,∴m=±
3
5
5
點(diǎn)評(píng):本題考查橢圓方程的求法和直線與橢圓位置關(guān)系的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過點(diǎn)P(1,
3
2
)

(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
3
,右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點(diǎn),點(diǎn)D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(diǎn)A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點(diǎn),且以MN為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長軸長是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)過點(diǎn)P(0,-2)的直線l交橢圓于M,N兩點(diǎn),且M,N不與橢圓的頂點(diǎn)重合,若以MN為直徑的圓過橢圓C的右頂點(diǎn)A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長為2,離心率為
2
2
,設(shè)過右焦點(diǎn)的直線l與橢圓C交于不同的兩點(diǎn)A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案