【題目】已知函數(shù)的兩個(gè)極值點(diǎn)為,且.

(1)求的值;

(2)若(其中上是單調(diào)函數(shù), 的取值范圍;

(3)當(dāng)時(shí), 求證:.

【答案】(1)(2)(3)詳見解析

【解析】

試題分析:(1)由極值定義得得兩根為,由韋達(dá)定理得,解得,再根據(jù)二次方程求根公式得(2)由(1)可得函數(shù)有三個(gè)單調(diào)區(qū)間,,所以為單調(diào)區(qū)間的一個(gè)子集,即,(3)利用不等式乘積性質(zhì)證明不等式:利用導(dǎo)數(shù)可得先將后增,有最小值所以;根據(jù)二次函數(shù)最值得,由于兩個(gè)不等式中等號(hào)取法不一致,所以乘積中等號(hào)取不到

試題解析:(1)

,

.

(2)由(1)知, 上遞減, 上遞增, 其中,

當(dāng) 上遞減時(shí),, ,當(dāng) 上遞增時(shí),, 綜上, 的取值范圍為.

(3)證明: 設(shè),則,令,得;令,得.,(當(dāng)時(shí)取等號(hào)),

不等式成立(因?yàn)槿〉葪l件不相同, 所以等號(hào)取不到).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)據(jù),,,是杭州市100個(gè)普通職工的2016年10月份的收入均不超過2萬元,設(shè)這100個(gè)數(shù)據(jù)的中位數(shù)為,平均數(shù)為方差為,如果再加上馬云2016年10月份的收入約100億元,則相對(duì)于、,101個(gè)月收入數(shù)據(jù)

A.平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

B.平均數(shù)大大增大,中位數(shù)可能不變,方差也不變

C.平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變

D.平均數(shù)大大增大,中位數(shù)可能不變,方差變大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間某超市搞促銷活動(dòng),當(dāng)顧客購買商品的金額達(dá)到一定數(shù)量后可以參加抽獎(jiǎng)活動(dòng),活動(dòng)規(guī)則為:從裝有個(gè)黑球, 個(gè)紅球, 個(gè)白球的箱子中(除顏色外,球完全相同)摸球.

(Ⅰ)當(dāng)顧客購買金額超過元而不超過元時(shí),可從箱子中一次性摸出個(gè)小球,每摸出一個(gè)黑球獎(jiǎng)勵(lì)元的現(xiàn)金,每摸出一個(gè)紅球獎(jiǎng)勵(lì)元的現(xiàn)金,每摸出一個(gè)白球獎(jiǎng)勵(lì)元的現(xiàn)金,求獎(jiǎng)金數(shù)不少于元的概率;

(Ⅱ)當(dāng)購買金額超過元時(shí),可從箱子中摸兩次,每次摸出個(gè)小球后,放回再摸一次,每摸出一個(gè)黑球和白球一樣獎(jiǎng)勵(lì)元的現(xiàn)金,每摸出一個(gè)紅球獎(jiǎng)勵(lì)元的現(xiàn)金,求獎(jiǎng)金數(shù)小于元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中央電視臺(tái)電視公開課《開講了》需要現(xiàn)場(chǎng)觀眾,先邀請(qǐng)甲、乙、丙、丁四所大學(xué)的40名學(xué)生參加,各大學(xué)邀請(qǐng)的學(xué)生如下表所示:

大學(xué)

人數(shù)

8

12

8

12

從這40名學(xué)生中按分層抽樣的方式抽取10名學(xué)生在第一排發(fā)言席就座

1求各大學(xué)抽取的人數(shù);

21中抽取的乙大學(xué)和丁大學(xué)的學(xué)生中隨機(jī)選出2名學(xué)生發(fā)言,求這2名學(xué)生來自同一所大學(xué)的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的定義域?yàn)?/span>,若存在閉區(qū)間[m,n] D,使得函數(shù)滿足:①[m,n]上是單調(diào)函數(shù);②[m,n]上的值域?yàn)?/span>[2m,2n],則稱區(qū)間[m,n]的“倍值區(qū)間”下列函數(shù)中存在“倍值區(qū)間”的 .(填上所有正確的序號(hào)

;

;

;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA=4,點(diǎn)D是AB的中點(diǎn)

(1)求證:ACBC

(2)求證:AC//平面CDB;

(3)求二面角B-DC-B1的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 上單調(diào)遞增,

(1)若函數(shù)有實(shí)數(shù)零點(diǎn),求滿足條件的實(shí)數(shù)的集合;

(2)若對(duì)于任意的時(shí),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 對(duì)邊分別為,已知.

1)若的面積等于,求

2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某公司技術(shù)升級(jí)后生產(chǎn)產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的成本(萬元)的幾組對(duì)照數(shù)據(jù):

(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出對(duì)的回歸直線方程;

(3)已知該公司技術(shù)升級(jí)前生產(chǎn)100噸產(chǎn)品的成本為90萬元.試根據(jù)(2)求出的回歸直線方程,預(yù)測(cè)技術(shù)升級(jí)后生產(chǎn)100噸產(chǎn)品的成本比技術(shù)升級(jí)前約降低多少萬元?

(附: , ,其中為樣本平均值)

查看答案和解析>>

同步練習(xí)冊(cè)答案