如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,DAC中點(diǎn),,延長(zhǎng)AEBCF,將ABD沿BD折起,使平面ABD平面BCD,如圖2所示.

(1)求證:AE⊥平面BCD
(2)求二面角A–DC–B的余弦值.
(3)在線段上是否存在點(diǎn)使得平面?若存在,請(qǐng)指明點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

(1)詳見(jiàn)解析,(2),(3)

解析試題分析:(1)已知條件為面面垂直,,因此可利用定理轉(zhuǎn)化為線面垂直.折疊前后皆有平面,為兩平面的交線,由平面ABD平面BCD,可得AE⊥平面BCD.(2)求二面角,有兩個(gè)方法,一是做出二面角的平面角,二是利用空間向量.本題由于有AE⊥平面BCD,可利用三垂線定理及其逆定理做出二面角的平面角,即過(guò)點(diǎn)E作EM垂直CD于M,連AM,則AM垂直CD,所以為二面角的平面角.利用空間向量求二面角,關(guān)鍵求出面的法向量,由于平面可知平面DCB的法向量為.平面的法向量可列方程組求出,再利用向量的數(shù)量積求出其夾角的余弦值.(3)探索點(diǎn),從線面平行性質(zhì)定理出發(fā),利用平面得EM平行過(guò)EM平面與平面的交線.由于過(guò)EM平面的任意性,難以確定M位置.本題利用空間向量解決就比較簡(jiǎn)單,設(shè),利用法向量與平面內(nèi)任一直線垂直,可解出,從而確定M位置.
試題解析:(1)因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/ab/8/1nlma3.png" style="vertical-align:middle;" />平面,交線為
又在中,,平面
所以平面.                   3分

(2)由(1)結(jié)論平面可得.
由題意可知,又.
如圖,以為坐標(biāo)原點(diǎn),分別以所在直線為軸,軸,軸,建立空間直角坐標(biāo)系
4分
不妨設(shè),則.
由圖1條件計(jì)算得,,
   5分
.
平面可知平面DCB的法向量為.                 6分
設(shè)平面的法向量為,則

,則,所以.                  8分
平面DCB的法向量為
所以,
所以二面角的余弦值為               9分
(3)設(shè),其中.
由于,
所以,其中

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱柱中,點(diǎn)在平面ABC內(nèi)的射影D在AC上,,.
(1)證明:
(2)設(shè)直線與平面的距離為,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示的幾何體中,面為正方形,面為等腰梯形,,,且平面平面
(1)求與平面所成角的正弦值;
(2)線段上是否存在點(diǎn),使平面平面
證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐的底面是正方形,側(cè)棱底面,過(guò)垂直點(diǎn),作垂直點(diǎn),平面點(diǎn),且,.

(1)設(shè)點(diǎn)上任一點(diǎn),試求的最小值;
(2)求證:在以為直徑的圓上;
(3)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理)已知直三棱柱中,是棱的中點(diǎn).如圖所示.
 
(1)求證:平面;
(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知的直徑,點(diǎn)、上兩點(diǎn),且,為弧的中點(diǎn).將沿直徑折起,使兩個(gè)半圓所在平面互相垂直(如圖2).

(1)求證:;
(2)在弧上是否存在點(diǎn),使得平面?若存在,試指出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由;
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知四棱錐,底面是等腰梯形,
,中點(diǎn),平面,
中點(diǎn).

(1)證明:平面平面;
(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點(diǎn).

求證:(1)AM∥平面BDE;
(2)AM⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖(1),四邊形ABCD中,E是BC的中點(diǎn),DB=2,DC=1,BC=,AB=AD=.將圖(1)沿直線BD折起,使得二面角A­BD­C為60°,如圖(2).

(1)求證:AE⊥平面BDC;
(2)求直線AC與平面ABD所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案