(本小題滿分14分)已知曲線(其中為自然對數(shù)的底數(shù))在點(diǎn)處的切線與軸交于點(diǎn),過點(diǎn)軸的垂線交曲線于點(diǎn),曲線在點(diǎn)處的切線與軸交于點(diǎn),過點(diǎn)軸的垂線交曲線于點(diǎn),……,依次下去得到一系列點(diǎn)、、……、,設(shè)點(diǎn)的坐標(biāo)為).(Ⅰ)分別求的表達(dá)式;(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),求
(Ⅰ)   (Ⅱ)
(Ⅰ)∵,∴曲線在點(diǎn)處的切線方程為,即
此切線與軸的交點(diǎn)的坐標(biāo)為,∴點(diǎn)的坐標(biāo)為.     ……2分
∵點(diǎn)),∴曲線在點(diǎn)處的切線方程為 …4分
,得點(diǎn)的橫坐標(biāo)為.∴數(shù)列是以0為首項(xiàng),為公差的等差數(shù)列。   ∴,.() ……7分
(Ⅱ)∵,(8分)

  ……10分
    ……12分
. …14分  
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
各項(xiàng)均為正數(shù)的數(shù)列,且對滿足的正整數(shù)都有。
(1)當(dāng)時,求通項(xiàng);
(2)證明:對任意,存在與有關(guān)的常數(shù),使得對于每個正整數(shù),都有。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
等比數(shù)列{}的前n項(xiàng)和為,已知對任意的,點(diǎn),均在函數(shù)均為常數(shù))的圖像上。
(1)求r的值;
(11)當(dāng)b=2時,記,證明:對任意的 ,不等式成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列中,且滿足
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)的解析式;
(Ⅲ)設(shè)計(jì)一個求的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列中,a1=1,前項(xiàng)和為,
成等差數(shù)列。
(1)求的值;              (2)求數(shù)列的通項(xiàng)公式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第二項(xiàng),第五項(xiàng),第十四項(xiàng)分別是等比數(shù)列{bn}的第二項(xiàng),第三項(xiàng),第四項(xiàng).
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}對任意自然數(shù)n,均有,
c1+c2+c3+……+c2006值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個等差數(shù)列的前n項(xiàng)和為48,前2n項(xiàng)和為60,則它的前3n項(xiàng)和為(   )
A.-24B.84C.72D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

政府決定用“對社會貢獻(xiàn)率”對企業(yè)進(jìn)行
評價,用an表示某企業(yè)第n年投入的治理污染費(fèi)用,用bn表示該企業(yè)第n
年的產(chǎn)值。設(shè)a1 = a(萬元),且以后治理污染費(fèi)用每年都比上一年增加3a
(萬元);又設(shè)b1 = b(萬元),且企業(yè)的產(chǎn)值每年均比上一年增長10%,用表示企業(yè)第n年“對社會貢獻(xiàn)率”.
(I)求該企業(yè)第一年和第二年的“對社會貢獻(xiàn)率”;
(II)試問:從第幾年起該企業(yè)“對社會貢獻(xiàn)率”不低于30%?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)是方程的兩個根的導(dǎo)數(shù).設(shè)
(1)求的值;
(2)已知對任意的正整數(shù),記.求數(shù)列的前 項(xiàng)和

查看答案和解析>>

同步練習(xí)冊答案