已知雙曲線 ,分別為它的左、右焦點(diǎn),為雙曲線上一點(diǎn),
成等差數(shù)列,則的面積為             

試題分析:不妨設(shè)P為雙曲線右支上一點(diǎn),則|PF1|-|PF2|=4………………①
又|PF1|,|F1F2|,|PF2|成等差數(shù)列,|F1F2|=10,所以|PF1|+|PF2|=20………………②
由①②可得|PF1|=12,|PF2|=8.所以由余弦定理得:cos∠F1PF2=,
所以sin∠F1PF2=,所以=|PF1||PF2|sin∠F1PF2=。
點(diǎn)評(píng):本題主要考查了等差數(shù)列的性質(zhì)、雙曲線的定義和余弦定理的綜合應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知:橢圓的中心為,長(zhǎng)軸的兩個(gè)端點(diǎn)為,右焦點(diǎn)為.若橢圓經(jīng)過點(diǎn),上的射影為,且△的面積為5.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知圓=1,直線=1,試證明:當(dāng)點(diǎn)在橢圓
運(yùn)動(dòng)時(shí),直線與圓恒相交;并求直線被圓截得的弦長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
求焦點(diǎn)為(-5,0)和(5,0),且一條漸近線為的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知雙曲線以長(zhǎng)方形ABCD的頂點(diǎn)A、B為左、右焦點(diǎn),且雙曲線過C、D兩頂點(diǎn).若AB=4,BC=3,則此雙曲線的標(biāo)準(zhǔn)方程為_____________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題10分)已知,動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡是曲線,直線與曲線交于兩點(diǎn).(1)求曲線的方程;
(2)若,求實(shí)數(shù)的值;
(3)過點(diǎn)作直線垂直,且直線與曲線交于兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線l:y=2x-4交拋物線y2=4x于A,B兩點(diǎn),試在拋物線AOB這段曲線上求一點(diǎn)P,使△PAB的面積最大,并求出這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓則 (   ) 
A.頂點(diǎn)相同.B.長(zhǎng)軸長(zhǎng)相同.
C.短軸長(zhǎng)相同.D.焦距相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的焦點(diǎn),長(zhǎng)軸長(zhǎng)6,設(shè)直線交橢圓,兩點(diǎn),求線段的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),過F2的直線交橢圓于點(diǎn)A、B,若,
 ( )
A. 10
B. 11
C. 9
D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案